International Journal of Mechanical and Materials Engineering最新文献

筛选
英文 中文
Analysis of microstructure and microhardness of aluminum alloy melt for grain refinement by twin-roll casting 双辊铸造细化铝合金熔体的显微组织和显微硬度分析
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-14 DOI: 10.1186/s40712-025-00211-0
Naveen Kumar, P. K. Mall, C. Durga Prasad, Amit Medhavi, Monica Mehrotra, Shailendra Kumar, Md Sarfaraz Alam, Gurbhej Singh, Suresh Singh, Ranjith Balu, Adem Abdirkadir Aden
{"title":"Analysis of microstructure and microhardness of aluminum alloy melt for grain refinement by twin-roll casting","authors":"Naveen Kumar,&nbsp;P. K. Mall,&nbsp;C. Durga Prasad,&nbsp;Amit Medhavi,&nbsp;Monica Mehrotra,&nbsp;Shailendra Kumar,&nbsp;Md Sarfaraz Alam,&nbsp;Gurbhej Singh,&nbsp;Suresh Singh,&nbsp;Ranjith Balu,&nbsp;Adem Abdirkadir Aden","doi":"10.1186/s40712-025-00211-0","DOIUrl":"10.1186/s40712-025-00211-0","url":null,"abstract":"<div><p>This study examines sheets produced using twin-roll casting (TRC) and melt conditioned twin-roll casting (MCTRC) to evaluate the effect of melt conditioning on segregation pattern and grain refinement. To produce sheets through the MTCRC technique, melt conditioning using high shear technology (high-speed rotor) was applied to Al-5 Mg alloys, before subjecting the melt to TRC. A low shear slope was used to prepare a commercially pure aluminum ingot. The mean grain size obtained for slope processed samples with vibration at a pouring temperature of 780°C is 69.4 µm, decreasing to 62.5 µm with a 20°C decrease in pouring temperature. Samples prepared without vibration at temperatures of 780°C and 760°C exhibit grain sizes of 85.172 and 77.8 µm, respectively. Additionally, the average grain size of Al-5 Mg alloy sheets produced using TRC is around 270 µm, which decreases to 230 µm for sheets produced using MCTRC. The grain size data comparison of the samples prepared using high shear technology and those with a low shear slope indicate successful results of grain refinement in both cases. However, it is advantageous to produce sheets using the low shear slope method as compared to the high shear technology, because of the low setup costs.\u0000</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00211-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of geopolymer concrete with waste granite powder as a sustainable alternative to sand 使用废花岗岩粉作为砂的可持续替代品的土工聚合物混凝土性能评估
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-13 DOI: 10.1186/s40712-025-00227-6
Ahmed Minhajuddin, Arijit Saha
{"title":"Performance evaluation of geopolymer concrete with waste granite powder as a sustainable alternative to sand","authors":"Ahmed Minhajuddin,&nbsp;Arijit Saha","doi":"10.1186/s40712-025-00227-6","DOIUrl":"10.1186/s40712-025-00227-6","url":null,"abstract":"<div><p>The control and disposal of solid waste pose significant global challenges, particularly in the management of waste granite powder (WGP), a by-product of granite processing industries. Addressing this issue, the present study investigates the potential of WGP as a partial substitute for fine aggregate in concrete, with replacement levels up to 50%. The research emphasizes the need for sustainable construction materials and explores the viability of using industrial waste to reduce environmental impact and resource depletion. Novel aspects of this study include the comprehensive evaluation of the physical and chemical characteristics of fine aggregate and WGP through X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses. The study also examines the fresh and mechanical properties of concrete, such as workability, compressive strength, flexural strength, ultrasonic pulse velocity (UPV), and modulus of elasticity to determine the optimum WGP substitution level. The findings reveal that mechanical strength improves with WGP replacement levels of up to 40%, highlighting the potential of WGP in enhancing concrete performance. Furthermore, correlations between different mechanical properties are analyzed, providing a deeper understanding of the behavior of WGP-blended concrete. In addition to technical evaluations, a detailed cost analysis is conducted to assess the economic feasibility of using WGP in concrete production. The results indicate that incorporating WGP not only offers environmental benefits by reducing waste but also provides a cost-effective alternative to traditional fine aggregate. Thus, substituting sand with WGP in concrete emerges as a sustainable solution, delivering comparable or superior mechanical properties while contributing to environmental conservation and cost reduction.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00227-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in wood-water relations in acetylated wood over the course of Rhodonia placenta brown rot decay 褐腐腐烂过程中乙酰化木材木水关系的变化
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-12 DOI: 10.1186/s40712-025-00228-5
Tiina Belt, Michael Altgen
{"title":"Changes in wood-water relations in acetylated wood over the course of Rhodonia placenta brown rot decay","authors":"Tiina Belt,&nbsp;Michael Altgen","doi":"10.1186/s40712-025-00228-5","DOIUrl":"10.1186/s40712-025-00228-5","url":null,"abstract":"<div><p>Acetylation greatly increases the decay resistance of wood, but even highly acetylated wood can be degraded by fungi if given sufficient time. This study investigated the degradation of acetylated wood by the brown rot fungus <i>Rhodonia placenta</i>, aiming to understand the fungal-induced changes in wood-water relations that are associated with decay. Acetylated samples as well as unacetylated references were exposed to <i>R. placenta</i> in a stacked-sample decay test to generate samples in different stages of decay. The decayed samples were used to investigate changes in acetyl content, water vapour sorption, and maximum cell wall moisture content as measured by solute exclusion. <i>R. placenta</i> caused high mass losses in acetylated wood, but preferential deacetylation was seen only in highly acetylated samples in the early stages of decay. Acetylated samples showed increased hygroscopicity in sorption measurements as a result of <i>R. placenta</i> degradation, particularly at high relative humidity in desorption from the undried decaying state. The increase was very strong in the highly acetylated samples and took place at low mass losses, indicating that it may be at least partially related to the deacetylation of the wood material. Degradation also increased maximum cell wall moisture content, but the increase was stronger in the references than the acetylated samples, suggesting that the acetyl groups remaining in the samples continue to provide a cell wall bulking effect.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00228-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of oxalic acid and CTAB on the structural and optical properties of nanocrystalline tungsten oxide synthesized via co-precipitation method 草酸和CTAB对共沉淀法合成纳米氧化钨结构和光学性能的影响
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-11 DOI: 10.1186/s40712-025-00214-x
R. P. Neethu, G. Madhu
{"title":"Influence of oxalic acid and CTAB on the structural and optical properties of nanocrystalline tungsten oxide synthesized via co-precipitation method","authors":"R. P. Neethu,&nbsp;G. Madhu","doi":"10.1186/s40712-025-00214-x","DOIUrl":"10.1186/s40712-025-00214-x","url":null,"abstract":"<div><p>Herein, we report the oxalic acid and cetyl trimethyl ammonium bromide (CTAB) assisted co-precipitation synthesis of nanocrystalline tungsten oxide (WO<sub>3</sub>). Different annealing temperatures were selected systematically based on the thermo-gravimetric analysis (TGA) of the precursors. The high crystallinity of the samples was revealed from the intense and narrow X-ray diffraction (XRD) peaks. Oxalic acid-assisted WO<sub>3</sub> showed a considerable reduction in crystallite size. The increase in crystallite size with annealing temperature was also evident in both samples. The change of surfactant and annealing temperature resulted in a modification of surface morphology that was identified using high-resolution resolution-scanning electron microscopy (HR-SEM). The formation of WO<sub>3</sub> was further established by the Raman spectra of the samples. Size strain plot (SSP) analysis of the samples showed a decrease of microstrain with an increase in annealing temperature. The bandgap energy obtained from the diffused reflectance spectra of the samples showed a red shift with an increase in annealing temperature. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of a pure oxidation state of W<sup>6+</sup> in oxalic acid-assisted WO<sub>3</sub> and mixed oxidation states of W<sup>6+</sup> and W<sup>5+</sup> in CTAB-assisted WO<sub>3</sub> samples. The mesoporous nature and specific surface area of the samples are inferred from Brunauer–Emmett–Teller (BET) analysis. The reduced crystallite size, stable oxidation state, and higher specific surface area of the oxalic acid-assisted WO<sub>3</sub> samples suggest its possible use as a supercapacitor and photocatalyst.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00214-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One pot of Sonogashira coupling and oxidation of alcohol reactions by magnetic nanocatalyst in an ideal environment 在理想的磁纳米催化剂环境下进行了一锅Sonogashira偶联和氧化醇的反应
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-11 DOI: 10.1186/s40712-025-00212-z
Mansour Binandeh
{"title":"One pot of Sonogashira coupling and oxidation of alcohol reactions by magnetic nanocatalyst in an ideal environment","authors":"Mansour Binandeh","doi":"10.1186/s40712-025-00212-z","DOIUrl":"10.1186/s40712-025-00212-z","url":null,"abstract":"<div><p>Mainly in the new era, there is a need to accelerate chemical reactions, which is made possible by advanced nanocatalysts, whose magnetic nanocatalysts are highly efficient in controlling chemical reactions such as Sonogashira coupling and alcohol oxidation. Magnetic nanocatalysts are made of magnetite nanoparticles under the chemical co-precipitation method. Their structure was identified by analysis such as EDX (energy-dispersive X-ray) and XRD (X-ray diffraction). The Sonogashira carbon–carbon coupling reaction was performed twice consecutively, and the product efficiency was more than 97%. Oxidation of alcohols to produce aldehyde products is up to 99%. The structure of the magnetic nanocomposite was analyzed after several reuses, and the results showed that it was unchanged, and its performance, structure, and magnetic properties were fully preserved. The reaction conditions are at the lowest possible temperature, harmless solvents, and the highest efficiency percentage, which creates green conditions. The products obtained from the Sonogashira double coupling reaction have two triple bonds. Also, the products with the oxidation of alcohols, which are used as the main precursors in the chemical and medical industries for chemical and pharmaceutical production, are very important.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00212-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological properties of epoxy matrix composites filled with particles of multicomponent titanium-based alloy 多组分钛基合金颗粒填充环氧基复合材料的摩擦学性能
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-11 DOI: 10.1186/s40712-025-00231-w
Gennadii Bagliuk, Oksana Baranovska, Viktor Varchenko, Andriy Buketov, Oleksandr Sapronov, Sehhii Ivanchenko
{"title":"Tribological properties of epoxy matrix composites filled with particles of multicomponent titanium-based alloy","authors":"Gennadii Bagliuk,&nbsp;Oksana Baranovska,&nbsp;Viktor Varchenko,&nbsp;Andriy Buketov,&nbsp;Oleksandr Sapronov,&nbsp;Sehhii Ivanchenko","doi":"10.1186/s40712-025-00231-w","DOIUrl":"10.1186/s40712-025-00231-w","url":null,"abstract":"<div><p>The article presents the results of a study on the effect of a dispersed filler, produced by thermal synthesis from a mixture of titanium hydride, ferrosilicomanganese, and boron carbide powders on the tribological characteristics of a polymer composite based on ED-20 epoxy diane oligomer. The filler was incorporated into the resin at concentration ranging from 5 to 40 parts of composite powder per 100 parts (by weight) of the epoxy oligomer. At a sliding speed of 0.5 m/s, the highest friction coefficient (µ) in the range of 0.55–0.6 was noted for the epoxy polymer without a filler, while an increase in the filler concentration in the epoxy polymer led to a noticeable decrease in the friction coefficient values. The lowest values of µ (0.32–0.35) were observed in composites with 5 and 10 wt.% filler. With an increase in the sliding speed up to 1 m/s at the stage of constant friction, the friction coefficient for unreinforced polymer and the composite with 5% filler reached values of 0.55–0.65 followed by a transition to catastrophic wear. For polymers with 10, 20, and 40 wt.% filler, composites with a higher content of the dispersed component were characterized by lower values of µ. The specific wear of composites decreased with the incorporation of cermet particles into the polymer and with an increased in its concentration in the polymer from 5 to 20%. However, when the filler content increases to 40%, the level of specific wear increases slightly.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00231-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach 通过实验调查评估基于细菌的自愈混凝土-一种可持续的方法
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-08 DOI: 10.1186/s40712-025-00215-w
Akula Vishal, Akhilesh Chepuri, N. Chandana
{"title":"Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach","authors":"Akula Vishal,&nbsp;Akhilesh Chepuri,&nbsp;N. Chandana","doi":"10.1186/s40712-025-00215-w","DOIUrl":"10.1186/s40712-025-00215-w","url":null,"abstract":"<div><p>This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using <i>Bacillus subtilis</i>. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of <i>B. subtilis</i> in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00215-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in cold spraying for polymer matrix composites: enhanced LSP and EMI shielding performance — review and future directions 聚合物基复合材料冷喷涂技术的进展:增强LSP和EMI屏蔽性能-综述和未来发展方向
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-07 DOI: 10.1186/s40712-025-00223-w
Bugra Karahan, Ismail Ozdemir, Thomas Grund, Niclas Hanisch, Thomas Lampke
{"title":"Advancements in cold spraying for polymer matrix composites: enhanced LSP and EMI shielding performance — review and future directions","authors":"Bugra Karahan,&nbsp;Ismail Ozdemir,&nbsp;Thomas Grund,&nbsp;Niclas Hanisch,&nbsp;Thomas Lampke","doi":"10.1186/s40712-025-00223-w","DOIUrl":"10.1186/s40712-025-00223-w","url":null,"abstract":"<div><p>Polymer matrix composites (PMCs) have emerged as critical materials in lightweight engineering applications due to their excellent mechanical properties and design versatility. However, their inherent limitations in electrical and thermal conductivity necessitate metallization, particularly for applications such as lightning strike protection (LSP) and electromagnetic interference (EMI) shielding. Cold spraying, a low-temperature metallization technique, addresses the shortcomings of conventional methods by enabling the deposition of dense, oxide-free, and highly conductive coatings with minimal damage to the composite substrate. This review provides a comprehensive overview of advancements in metallization techniques, with a focus on cold spraying, to enhance the electrical and thermal performance of PMCs for LSP and EMI shielding. The combination of PMCs with conductive materials presents an innovative approach to achieving lightweight, corrosion-resistant, and efficient LSP and EMI shielding solutions, offering significant advancements in surface functionalization. Future research directions include the exploration of hybrid metallization strategies and the integration of cold spraying with additive manufacturing, highlighting their potential to create multifunctional and high-performance PMC-based systems. Additionally, emerging trends such as novel or smart materials, optimization of cold spray processes through advanced modeling, and the translation of these innovations into industrial applications are discussed.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00223-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Au-doped mesoporous TiO2 supported on g-C3N4 as an efficient light-assisted catalyst for oxidative desulfurization of model fuels with different sulfur content 制备以 g-C3N4 为支撑的掺金介孔二氧化钛,作为高效光助催化剂用于不同硫含量模型燃料的氧化脱硫
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-07 DOI: 10.1186/s40712-025-00225-8
Behzad Moeinifard, Alireza Najafi Chermahini
{"title":"Fabrication of Au-doped mesoporous TiO2 supported on g-C3N4 as an efficient light-assisted catalyst for oxidative desulfurization of model fuels with different sulfur content","authors":"Behzad Moeinifard,&nbsp;Alireza Najafi Chermahini","doi":"10.1186/s40712-025-00225-8","DOIUrl":"10.1186/s40712-025-00225-8","url":null,"abstract":"<div><p>In the present study, the mesoporous TiO<sub>2</sub> that was supported on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) was decorated with Au. The nanocomposite (Au-<i>m</i>-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>) has been successfully synthesized by combining sono-chemical and EISA methods and was subsequently used in photocatalytic oxidative desulfurization of dibenzothiophene (DBT) in n-octane as a model fuel and under visible illumination. The Au-<i>m</i>-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–Vis diffusive reflectance spectra (UV–Vis DRS), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectra (FT-IR), and nitrogen adsorption measurements. The removal efficiency of DBT was 98.7% under the optimized reaction conditions and under visible-light irradiation (<i>λ</i> &gt; 400 nm).\u0000</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00225-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological investigations and swelling behavior of gum ghatti-cl-poly(acrylic acid) hydrogel reinforced with graphene oxide 氧化石墨烯增强聚丙烯酸胶凝胶的流变学研究和膨胀行为
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2025-02-06 DOI: 10.1186/s40712-024-00148-w
Pragnesh N. Dave, Pradip M. Macwan, Bhagvan Kamaliya, Arvind Kumar
{"title":"Rheological investigations and swelling behavior of gum ghatti-cl-poly(acrylic acid) hydrogel reinforced with graphene oxide","authors":"Pragnesh N. Dave,&nbsp;Pradip M. Macwan,&nbsp;Bhagvan Kamaliya,&nbsp;Arvind Kumar","doi":"10.1186/s40712-024-00148-w","DOIUrl":"10.1186/s40712-024-00148-w","url":null,"abstract":"<div><p>The primary aim of this study is to examine the rheological attributes of graphene oxide (GO)-reinforced gum ghatti-cl-poly(AA)/GO (GGAAGO) hydrogels, with the intent of improving their mechanical and thermal properties. Thermal gravimetric analysis (TGA) was employed to assess the thermal stability of the synthesized hydrogels, revealing the interaction between GO, gum ghatti, and acrylic acid. This investigation centers on the swelling behavior and rheological assessments of the hydrogels. Various experiments were conducted on nanocomposite particle gels to scrutinize the impact of graphene oxide (GO) microparticle concentration (ranging from 0 to 5 mg) on network topology, swelling, and mechanical characteristics of the gels. The rheological analysis also indicates a reduction in viscosity.</p><p>Furthermore, the rheological examination of hydrogels indicates that the storage modulus (G′) consistently surpasses the loss modulus (G″) within the linear viscoelastic zone across the entire frequency spectrum. This dominance of the storage modulus over the loss modulus suggests continuous covalent crosslinking, accounting for the solid-like and elastic nature (G′ &gt; G″) of the hydrogels. All rheological parameters highlight commendable mechanical properties, rendering the composite hydrogel suitable for applications such as drug administration and various environmental uses.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00148-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信