Rheological investigations and swelling behavior of gum ghatti-cl-poly(acrylic acid) hydrogel reinforced with graphene oxide

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pragnesh N. Dave, Pradip M. Macwan, Bhagvan Kamaliya, Arvind Kumar
{"title":"Rheological investigations and swelling behavior of gum ghatti-cl-poly(acrylic acid) hydrogel reinforced with graphene oxide","authors":"Pragnesh N. Dave,&nbsp;Pradip M. Macwan,&nbsp;Bhagvan Kamaliya,&nbsp;Arvind Kumar","doi":"10.1186/s40712-024-00148-w","DOIUrl":null,"url":null,"abstract":"<div><p>The primary aim of this study is to examine the rheological attributes of graphene oxide (GO)-reinforced gum ghatti-cl-poly(AA)/GO (GGAAGO) hydrogels, with the intent of improving their mechanical and thermal properties. Thermal gravimetric analysis (TGA) was employed to assess the thermal stability of the synthesized hydrogels, revealing the interaction between GO, gum ghatti, and acrylic acid. This investigation centers on the swelling behavior and rheological assessments of the hydrogels. Various experiments were conducted on nanocomposite particle gels to scrutinize the impact of graphene oxide (GO) microparticle concentration (ranging from 0 to 5 mg) on network topology, swelling, and mechanical characteristics of the gels. The rheological analysis also indicates a reduction in viscosity.</p><p>Furthermore, the rheological examination of hydrogels indicates that the storage modulus (G′) consistently surpasses the loss modulus (G″) within the linear viscoelastic zone across the entire frequency spectrum. This dominance of the storage modulus over the loss modulus suggests continuous covalent crosslinking, accounting for the solid-like and elastic nature (G′ &gt; G″) of the hydrogels. All rheological parameters highlight commendable mechanical properties, rendering the composite hydrogel suitable for applications such as drug administration and various environmental uses.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00148-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00148-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The primary aim of this study is to examine the rheological attributes of graphene oxide (GO)-reinforced gum ghatti-cl-poly(AA)/GO (GGAAGO) hydrogels, with the intent of improving their mechanical and thermal properties. Thermal gravimetric analysis (TGA) was employed to assess the thermal stability of the synthesized hydrogels, revealing the interaction between GO, gum ghatti, and acrylic acid. This investigation centers on the swelling behavior and rheological assessments of the hydrogels. Various experiments were conducted on nanocomposite particle gels to scrutinize the impact of graphene oxide (GO) microparticle concentration (ranging from 0 to 5 mg) on network topology, swelling, and mechanical characteristics of the gels. The rheological analysis also indicates a reduction in viscosity.

Furthermore, the rheological examination of hydrogels indicates that the storage modulus (G′) consistently surpasses the loss modulus (G″) within the linear viscoelastic zone across the entire frequency spectrum. This dominance of the storage modulus over the loss modulus suggests continuous covalent crosslinking, accounting for the solid-like and elastic nature (G′ > G″) of the hydrogels. All rheological parameters highlight commendable mechanical properties, rendering the composite hydrogel suitable for applications such as drug administration and various environmental uses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信