Advancements in cold spraying for polymer matrix composites: enhanced LSP and EMI shielding performance — review and future directions

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Bugra Karahan, Ismail Ozdemir, Thomas Grund, Niclas Hanisch, Thomas Lampke
{"title":"Advancements in cold spraying for polymer matrix composites: enhanced LSP and EMI shielding performance — review and future directions","authors":"Bugra Karahan,&nbsp;Ismail Ozdemir,&nbsp;Thomas Grund,&nbsp;Niclas Hanisch,&nbsp;Thomas Lampke","doi":"10.1186/s40712-025-00223-w","DOIUrl":null,"url":null,"abstract":"<div><p>Polymer matrix composites (PMCs) have emerged as critical materials in lightweight engineering applications due to their excellent mechanical properties and design versatility. However, their inherent limitations in electrical and thermal conductivity necessitate metallization, particularly for applications such as lightning strike protection (LSP) and electromagnetic interference (EMI) shielding. Cold spraying, a low-temperature metallization technique, addresses the shortcomings of conventional methods by enabling the deposition of dense, oxide-free, and highly conductive coatings with minimal damage to the composite substrate. This review provides a comprehensive overview of advancements in metallization techniques, with a focus on cold spraying, to enhance the electrical and thermal performance of PMCs for LSP and EMI shielding. The combination of PMCs with conductive materials presents an innovative approach to achieving lightweight, corrosion-resistant, and efficient LSP and EMI shielding solutions, offering significant advancements in surface functionalization. Future research directions include the exploration of hybrid metallization strategies and the integration of cold spraying with additive manufacturing, highlighting their potential to create multifunctional and high-performance PMC-based systems. Additionally, emerging trends such as novel or smart materials, optimization of cold spray processes through advanced modeling, and the translation of these innovations into industrial applications are discussed.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00223-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00223-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer matrix composites (PMCs) have emerged as critical materials in lightweight engineering applications due to their excellent mechanical properties and design versatility. However, their inherent limitations in electrical and thermal conductivity necessitate metallization, particularly for applications such as lightning strike protection (LSP) and electromagnetic interference (EMI) shielding. Cold spraying, a low-temperature metallization technique, addresses the shortcomings of conventional methods by enabling the deposition of dense, oxide-free, and highly conductive coatings with minimal damage to the composite substrate. This review provides a comprehensive overview of advancements in metallization techniques, with a focus on cold spraying, to enhance the electrical and thermal performance of PMCs for LSP and EMI shielding. The combination of PMCs with conductive materials presents an innovative approach to achieving lightweight, corrosion-resistant, and efficient LSP and EMI shielding solutions, offering significant advancements in surface functionalization. Future research directions include the exploration of hybrid metallization strategies and the integration of cold spraying with additive manufacturing, highlighting their potential to create multifunctional and high-performance PMC-based systems. Additionally, emerging trends such as novel or smart materials, optimization of cold spray processes through advanced modeling, and the translation of these innovations into industrial applications are discussed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信