Influence of oxalic acid and CTAB on the structural and optical properties of nanocrystalline tungsten oxide synthesized via co-precipitation method

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
R. P. Neethu, G. Madhu
{"title":"Influence of oxalic acid and CTAB on the structural and optical properties of nanocrystalline tungsten oxide synthesized via co-precipitation method","authors":"R. P. Neethu,&nbsp;G. Madhu","doi":"10.1186/s40712-025-00214-x","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we report the oxalic acid and cetyl trimethyl ammonium bromide (CTAB) assisted co-precipitation synthesis of nanocrystalline tungsten oxide (WO<sub>3</sub>). Different annealing temperatures were selected systematically based on the thermo-gravimetric analysis (TGA) of the precursors. The high crystallinity of the samples was revealed from the intense and narrow X-ray diffraction (XRD) peaks. Oxalic acid-assisted WO<sub>3</sub> showed a considerable reduction in crystallite size. The increase in crystallite size with annealing temperature was also evident in both samples. The change of surfactant and annealing temperature resulted in a modification of surface morphology that was identified using high-resolution resolution-scanning electron microscopy (HR-SEM). The formation of WO<sub>3</sub> was further established by the Raman spectra of the samples. Size strain plot (SSP) analysis of the samples showed a decrease of microstrain with an increase in annealing temperature. The bandgap energy obtained from the diffused reflectance spectra of the samples showed a red shift with an increase in annealing temperature. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of a pure oxidation state of W<sup>6+</sup> in oxalic acid-assisted WO<sub>3</sub> and mixed oxidation states of W<sup>6+</sup> and W<sup>5+</sup> in CTAB-assisted WO<sub>3</sub> samples. The mesoporous nature and specific surface area of the samples are inferred from Brunauer–Emmett–Teller (BET) analysis. The reduced crystallite size, stable oxidation state, and higher specific surface area of the oxalic acid-assisted WO<sub>3</sub> samples suggest its possible use as a supercapacitor and photocatalyst.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00214-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00214-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report the oxalic acid and cetyl trimethyl ammonium bromide (CTAB) assisted co-precipitation synthesis of nanocrystalline tungsten oxide (WO3). Different annealing temperatures were selected systematically based on the thermo-gravimetric analysis (TGA) of the precursors. The high crystallinity of the samples was revealed from the intense and narrow X-ray diffraction (XRD) peaks. Oxalic acid-assisted WO3 showed a considerable reduction in crystallite size. The increase in crystallite size with annealing temperature was also evident in both samples. The change of surfactant and annealing temperature resulted in a modification of surface morphology that was identified using high-resolution resolution-scanning electron microscopy (HR-SEM). The formation of WO3 was further established by the Raman spectra of the samples. Size strain plot (SSP) analysis of the samples showed a decrease of microstrain with an increase in annealing temperature. The bandgap energy obtained from the diffused reflectance spectra of the samples showed a red shift with an increase in annealing temperature. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of a pure oxidation state of W6+ in oxalic acid-assisted WO3 and mixed oxidation states of W6+ and W5+ in CTAB-assisted WO3 samples. The mesoporous nature and specific surface area of the samples are inferred from Brunauer–Emmett–Teller (BET) analysis. The reduced crystallite size, stable oxidation state, and higher specific surface area of the oxalic acid-assisted WO3 samples suggest its possible use as a supercapacitor and photocatalyst.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信