International Journal of Mechanical and Materials Engineering最新文献

筛选
英文 中文
CuMn2O4 spinel electrodes: effect of the hydrothermal treatment duration on electrochemical performance 铜锰氧化物尖晶石电极:水热处理持续时间对电化学性能的影响
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-07-11 DOI: 10.1186/s40712-024-00152-0
Souha Aouini, Afrah Bardaoui, Ana M. Ferraria, Radhouane Chtourou, Diogo M. F. Santos
{"title":"CuMn2O4 spinel electrodes: effect of the hydrothermal treatment duration on electrochemical performance","authors":"Souha Aouini,&nbsp;Afrah Bardaoui,&nbsp;Ana M. Ferraria,&nbsp;Radhouane Chtourou,&nbsp;Diogo M. F. Santos","doi":"10.1186/s40712-024-00152-0","DOIUrl":"10.1186/s40712-024-00152-0","url":null,"abstract":"<div><p>CuMn<sub>2</sub>O<sub>4</sub> (CMO) thin films are produced using a simple hydrothermal method. The influence of reaction duration on the electrodes’ electrochemical performance is investigated. XRD data shows improved crystal structure after 24-h reaction time, with a crystallite size of 12.17 nm. Distinct vibrational peaks associated with Cu–O and Mn–O are observed in the ATR-FTIR spectra, corroborating the spinel formation after 24 h. XPS analysis shows a compositional shift over time, starting with copper hydroxide at 12 h, evolving into a mix of copper and manganese oxides, hydroxides, and oxyhydroxides by 18 h, and achieving the desired spinel composition by 24 h. Microscopic analysis reveals CMO is arranged as small sheet structures, with 4.95 ± 2.92 µm in length after 24-h reaction. The CMO<sub>24h</sub> electrode displays a maximum specific capacitance of 1187.50 Fg<sup>−1</sup> at a scan rate of 1 mVs<sup>−1</sup> in 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte. The electrochemical performance of the synthesized CMO electrodes reveals a high potential for energy storage applications.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00152-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of composite films using polymer blends of chitosan and cellulose nanocrystals from marine origin 利用壳聚糖和海洋来源纤维素纳米晶体的聚合物混合物合成复合薄膜
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-07-08 DOI: 10.1186/s40712-024-00145-z
Rahul Varma, Sugumar Vasudevan
{"title":"Synthesis of composite films using polymer blends of chitosan and cellulose nanocrystals from marine origin","authors":"Rahul Varma,&nbsp;Sugumar Vasudevan","doi":"10.1186/s40712-024-00145-z","DOIUrl":"10.1186/s40712-024-00145-z","url":null,"abstract":"<div><p>Thin films reinforced with chitosan and cellulose nanocrystals (CNC) were produced using the casting process. In this study, the impact of plasticisers and sizing agents such as glycerol and polyvinyl alcohol (PVA) respectively on morphological, structural, thermal, and mechanical properties was investigated. The results showed the blends of CNC/PVA/glycerol gave better results when compared to films produced by blends of chitosan/PVA/glycerol films and chitosan/CNC/PVA/glycerol films. The UV spectroscopy showed 65% transmittance for chitosan/PVA/glycerol films, while the film of CNC/PVA/glycerol showed transmittance of 40%. The transmittance of chitosan/CNC/PVA/glycerol showed 75%. The films formed by the combination of CNC/PVA/glycerol showed better stress/strain properties than other films. The films of all combinations showed good thermal stability between the range of 350 and 450 °C. The morphological study using SEM revealed smooth texture for all the films. The study suggests that the films produced may be used for the food packaging applications due to its thermal stability and stress/strain properties.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00145-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and statistical investigation on the dielectric breakdown of magneto nanofluids for power applications 用于电力应用的磁性纳米流体介电击穿的实验和统计调查
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-07-02 DOI: 10.1186/s40712-024-00144-0
Md Rizwan, Suhaib Ahmad Khan, M. Rizwan Khan, Asfar Ali Khan
{"title":"Experimental and statistical investigation on the dielectric breakdown of magneto nanofluids for power applications","authors":"Md Rizwan,&nbsp;Suhaib Ahmad Khan,&nbsp;M. Rizwan Khan,&nbsp;Asfar Ali Khan","doi":"10.1186/s40712-024-00144-0","DOIUrl":"10.1186/s40712-024-00144-0","url":null,"abstract":"<div><p>The insulating oil serves the dual purpose of providing insulation and cooling within transformers. This investigation aims to explore the impact of various nanoparticles on the dielectric breakdown voltage (BDV) of dielectric oils. The study examines the effect of the concentration of magnetic nanoparticles on the dielectric breakdown voltage of insulating oils. Nanoparticles such as iron (II, III) oxide (Fe<sub>3</sub>O<sub>4</sub>), cobalt (II, III) oxide (CO<sub>3</sub>O<sub>4</sub>), and ferrous phosphide (Fe<sub>3</sub>P) were utilized to create nanofluids with carrier mediums consisting of mineral oil and synthetic ester oil. BDV determination was conducted using a VDE and S–S electrode system according to IEC 60156 standards. Nanofluid were prepared using a two-step method, and their concentrations ranged from 0.01 g/L, 0.02 g/L, and 0.04 g/L in base oils. Twelve iterations were conducted for each prepared nanofluid, and breakdown voltage measurements were recorded. The results indicate a noteworthy enhancement in the breakdown voltage of nanofluids. The statistical analysis was performed on the dielectric property of nanofluid samples for better breakdown accuracy. The maximum enhancement at specific nanoparticle concentrations was shown by each nanofluid. The results show that under the S–S electrode configuration, the greatest overall enhancement was observed for Fe<sub>3</sub>P in mineral oil, with an enhancement of 70.05%, and Fe<sub>3</sub>O<sub>4</sub> in synthetic ester oil, with an enhancement of 46.29%.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00144-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward automated microstructure characterization of stainless steels through machine learning-based analysis of replication micrographs 通过基于机器学习的复制显微照片分析,实现不锈钢微观结构的自动表征
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-06-26 DOI: 10.1186/s40712-024-00146-y
Hamza Ghauri, Reza Tafreshi, Bilal Mansoor
{"title":"Toward automated microstructure characterization of stainless steels through machine learning-based analysis of replication micrographs","authors":"Hamza Ghauri,&nbsp;Reza Tafreshi,&nbsp;Bilal Mansoor","doi":"10.1186/s40712-024-00146-y","DOIUrl":"10.1186/s40712-024-00146-y","url":null,"abstract":"<div><p>Machine learning-driven automated replication micrographs analysis makes possible rapid and unbiased damage assessment of in-service steel components. Although micrographs captured by scanning electron microscopy (SEM) have been analyzed at depth using machine learning, there is no literature available on the technique being attempted on optical replication micrographs. This paper presents a machine-learning approach to segment and quantify carbide precipitates in thermally exposed HP40-Nb stainless-steel microstructures from batches of low-resolution optical images obtained by replication metallography. A dataset of nine micrographs was used to develop a random forest classification model to segment precipitates within the matrix (intragranular) and at grain boundaries (intergranular). The micrographs were preprocessed using background subtraction, denoising, and sharpening to improve quality. The method achieves high segmentation accuracy (91% intergranular, 97% intragranular) compared to human expert classification. Furthermore, segmented micrographs were quantified to obtain carbide size, shape, and density distribution. The correlations in the quantified data aligned with expected carbide evolution mechanisms. Results from this study are promising but necessitate validation of the method on a larger dataset representative of evolution of thermal degradation in steel, given that characterization of the evolution of microstructure components, such as precipitates, applies to broad applications across diverse alloy systems, particularly in extreme service.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00146-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lifetime assessment of semi-submersible wind turbines by Gaidai risk evaluation method 用 Gaidai 风险评估法评估半潜式风力涡轮机的寿命
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-06-22 DOI: 10.1186/s40712-024-00142-2
Oleg Gaidai, Alia Ashraf, Yu Cao, Jinlu Sheng, Yan Zhu, Zirui Liu
{"title":"Lifetime assessment of semi-submersible wind turbines by Gaidai risk evaluation method","authors":"Oleg Gaidai,&nbsp;Alia Ashraf,&nbsp;Yu Cao,&nbsp;Jinlu Sheng,&nbsp;Yan Zhu,&nbsp;Zirui Liu","doi":"10.1186/s40712-024-00142-2","DOIUrl":"10.1186/s40712-024-00142-2","url":null,"abstract":"<div><p>As the global agenda turns more towards the so-called challenge of climate change and lowering carbon emissions, research into green, renewable energy sources becoming nowadays more and more popular. Offshore wind power, produced by FOWTs (i.e., Floating Offshore Wind Turbines), is one such substitute. It is a significant industrial part of the contemporary offshore wind energy industry and produces clean, renewable electricity. Accurate operational lifetime assessment for FOWTs is an important technical safety issue, as environmental in situ loads can lead to fatigue damage as well as extreme structural dynamics, which can cause structural damage. In this study, in situ environmental hydro and aerodynamic environmental loads, that act on FOWT, given actual local sea conditions have been numerically assessed, using the FAST coupled nonlinear aero-hydro-servo-elastic software package. FAST combines aerodynamics and hydrodynamics models for FOWTs, control and electrical system dynamics models, along with structural dynamics models, enabling coupled nonlinear MC simulation in the real time. The FAST software tool enables analysis of a range of FOWT configurations, including 2- or 3-bladed horizontal-axis rotor, pitch and stall regulation, rigid and teetering hub, upwind and downwind rotors. FAST relies on advanced engineering models—derived from the fundamental laws, however with appropriate assumptions and simplifications, supplemented where applicable with experimental data. Recently developed Gaidai reliability lifetime assessment method, being well suitable for risks evaluation of a variety of sustainable energy systems, experiencing nonlinear, potentially extreme in situ environmental loads, throughout their designed service life. The main advantage of the advocated Gaidai risks evaluation methodology being its ability to tackle simultaneously a large number of dynamic systems' degrees of freedom, corresponding to the system's critical components.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00142-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sintering and electrical conductivity of calcium-doped three-cation perovskite materials 掺钙三阳离子包晶材料的烧结和导电性能
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-06-22 DOI: 10.1186/s40712-024-00147-x
Sai Ram Gajjala, Geoffrey A. Swift, Rasit Koc
{"title":"Sintering and electrical conductivity of calcium-doped three-cation perovskite materials","authors":"Sai Ram Gajjala,&nbsp;Geoffrey A. Swift,&nbsp;Rasit Koc","doi":"10.1186/s40712-024-00147-x","DOIUrl":"10.1186/s40712-024-00147-x","url":null,"abstract":"<div><p>La<sub>1-x</sub>Ca<sub>x</sub>(B1,B2,B3)O<sub>3</sub> perovskite powders doped with calcium were synthesized and sintered. Calcium doping modified the A-site of the perovskite structure, while the B-site was composed of three cations in equal atomic amounts. Cations on the B-site included cobalt, chromium, iron, manganese, and nickel. Sintering temperature varied from 1200 to 1400 °C in air. Density measurements and microstructure imaging determined effect of composition on sintering. Electrical conductivity of sintered compacts was measured using the four-wire measurement method at temperatures of 300 to 900 °C in air. Electrical properties as a function of composition indicate the effect of calcium doping in combination with varied B-site substitution increases electrical conductivity and improves sintering.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00147-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of surface and material technologies on the loss of lubrication performance of gears 表面和材料技术对齿轮润滑性能损失的影响
IF 3.1
International Journal of Mechanical and Materials Engineering Pub Date : 2024-06-17 DOI: 10.1186/s40712-024-00143-1
B. Morhard, T. Lohner, K. Stahl
{"title":"Influence of surface and material technologies on the loss of lubrication performance of gears","authors":"B. Morhard,&nbsp;T. Lohner,&nbsp;K. Stahl","doi":"10.1186/s40712-024-00143-1","DOIUrl":"10.1186/s40712-024-00143-1","url":null,"abstract":"<div><p>Enabling gears to withstand loss of lubrication in gearboxes without secondary oil supply systems can reduce weight and space demand and thus fuel consumption. This study investigates the potential of surface and material technologies on the loss of lubrication performance of gears. Thereby, superfinished, coated, and nitrided gears are compared to ground gears. Systematic experiments under loss of lubrication are performed at a back-to-back gear test rig with circumferential speeds of up to 20 m/s and Hertzian pressures in the pitch point of up to 1723 N/mm<sup>2</sup>. Torque loss, pinion bulk temperatures, and tooth flank surface are analyzed. The results show that surface and material technologies can greatly influence frictional behavior and damage initiation of gears operating under loss of lubrication. With the materials and conditions tested, superfinishing yields to accelerated rise of frictional losses and thus scuffing. Coatings lead to significantly enhanced service life under loss of lubrication by friction reduction and scuffing avoidance.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00143-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of Taguchi method for high energy ball milling of CaCO3 田口法高能球磨碳酸钙的研究
IF 3.1
International Journal of Mechanical and Materials Engineering Pub Date : 2022-02-04 DOI: 10.1186/s40712-021-00140-8
Maya Radune, Svetlana Lugovskoy, Yaniv Knop, Avigdor Yankelevitch
{"title":"Use of Taguchi method for high energy ball milling of CaCO3","authors":"Maya Radune,&nbsp;Svetlana Lugovskoy,&nbsp;Yaniv Knop,&nbsp;Avigdor Yankelevitch","doi":"10.1186/s40712-021-00140-8","DOIUrl":"10.1186/s40712-021-00140-8","url":null,"abstract":"<div><p>Taguchi’s method was applied to investigate the effect of main high energy ball milling (HEBM) parameters: milling time (MT), ball to powder weight ratio (BPWR), and milling speed (MS) on the CaCO<sub>3</sub> crystallite size. The settings of HEBM parameters were determined by using the <i>L9</i> (3<sup>3</sup>) orthogonal experiments array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD) scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy. The crystallite size of CaCO<sub>3</sub> varied between 140 and 540 nm depending on the HEBM conditions. The analysis of variance (ANOVA) was used to find the significance and percentage of contribution of each milling parameter. It was established that the MT is the most effective parameter followed by MS and BPWR. A confirmation test was carried out with a 90% confidence level to illustrate the effectiveness of the Taguchi optimization method. The optimum milling parameter combination was determined by using the analysis of signal-to-noise (S/N) ratio. Based on the S/N ratio analysis, optimal HEBM conditions were found MT 10 h, MS 600 revolutions per minute (rpm), BPWR 50:1.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"17 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ijmme.springeropen.com/counter/pdf/10.1186/s40712-021-00140-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4157257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment 热处理后 3D 打印钛 Ti-64 ELI 表面粗糙度和力学性能影响的实验研究
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2021-11-17 DOI: 10.1186/s40712-021-00138-2
L. Lebea, H. M. Ngwangwa, D. Desai, F. Nemavhola
{"title":"Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment","authors":"L. Lebea,&nbsp;H. M. Ngwangwa,&nbsp;D. Desai,&nbsp;F. Nemavhola","doi":"10.1186/s40712-021-00138-2","DOIUrl":"10.1186/s40712-021-00138-2","url":null,"abstract":"<div><p>The initial stability after implantology is paramount to the survival of the dental implant, and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of three-dimensional printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of three-dimensional printed dental implants and three-dimensional printed dogbone tensile samples under areal height parameters, amplitude parameters (average of ordinates), skewness parameters and mechanical properties. During the experiment, roughness values were analysed, and the results showed that the skewness parameter demonstrated a minimum value of 0.59%. The three-dimensional printed dental implant recorded the arithmetic mean deviation of the assessed profile with a 3.4-mm diameter at 43.23% and the three-dimensional printed dental implant with a 4.3-mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress decreases from 968.35 to 955.25 MPa, the arithmetic mean deviation increases by 1.4%, and when ultimate tensile stress increases to 961.18 MPa, the arithmetic mean deviation increases by 0.6%. When the cycle decreases from 262,142 to 137,433, the arithmetic mean deviation shows that less than a 90.74% increase in the cycle is obtained. For the three-dimensional printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"16 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-021-00138-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90219363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injection-molded natural fiber-reinforced polymer composites–a review 注塑成型天然纤维增强聚合物复合材料综述
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2021-11-10 DOI: 10.1186/s40712-021-00139-1
M. S. Rabbi, Tansirul Islam, G. M. Sadiqul Islam
{"title":"Injection-molded natural fiber-reinforced polymer composites–a review","authors":"M. S. Rabbi,&nbsp;Tansirul Islam,&nbsp;G. M. Sadiqul Islam","doi":"10.1186/s40712-021-00139-1","DOIUrl":"10.1186/s40712-021-00139-1","url":null,"abstract":"<div><p>For the last couple of decades, researchers have been trying to explore eco-friendly materials which would significantly reduce the dependency on synthetic fibers and their composites. Natural fiber-based composites possess several excellent properties. They are biodegradable, non-abrasive, low cost, and lower density, which led to the growing interest in using these materials in industrial applications. However, the properties of composite materials depend on the chemical treatment of the fiber, matrix combination, and fabrication process. This study gives a bibliographic review on bio-composites specially fabricated by the injection-molding method. Technical information of injection-molded natural fiber reinforcement-based composites, especially their type and compounding process prior to molding, are discussed. A wide variety of injection-molding machines was used by the researchers for the composite manufacturing. Injection-molded composites contain natural fiber, including hemp, jute, sisal, flax, abaca, rice husk, kenaf, bamboo, and some miscellaneous kinds of fibers, are considered in this study.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"16 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-021-00139-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84318470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信