利用 ARC、TRJ 和 DBR 等先进的光捕获技术提高 a-Si:H/μc-Si 微晶串联太阳能电池的效率

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Saeed Khosroabadi, Ramisa Eghbali, Anis Shokouhmand
{"title":"利用 ARC、TRJ 和 DBR 等先进的光捕获技术提高 a-Si:H/μc-Si 微晶串联太阳能电池的效率","authors":"Saeed Khosroabadi,&nbsp;Ramisa Eghbali,&nbsp;Anis Shokouhmand","doi":"10.1186/s40712-024-00174-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the performance of a-Si:H/μc-Si:H tandem solar cells was comprehensively assessed through two-dimensional numerical simulations. Our work involved optimizing the layer thicknesses and exploring advanced light-trapping techniques to enhance photogenerated current in both sub-cells. To reduce surface reflections on the top cell, we proposed a two-layer antireflection coating, composed of SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>. Additionally, we implemented a 1D photonic crystal as a broadband back reflector within the solar cell. In order to balance the current density between the sub-cells and prevent carrier accumulation at the interface, we introduced a tunnel recombination junction (TRJ). This TRJ consisted of n-μc-Si:H/p-μc-Si:H layers with a thickness of 10 nm. Under global AM 1.5G conditions, our proposed cell structure exhibited impressive electrical characteristics, including an open-circuit voltage of 1.38 V, a short-circuit current density of 12.51 mA/cm<sup>2</sup>, and a fill factor of 80.82%. These attributes culminated in a remarkable total area conversion efficiency of 14%.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00174-8","citationCount":"0","resultStr":"{\"title\":\"Enhancing efficiency in a-Si:H/μc-Si micromorph tandem solar cells through advanced light-trapping techniques using ARC, TRJ, and DBR\",\"authors\":\"Saeed Khosroabadi,&nbsp;Ramisa Eghbali,&nbsp;Anis Shokouhmand\",\"doi\":\"10.1186/s40712-024-00174-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the performance of a-Si:H/μc-Si:H tandem solar cells was comprehensively assessed through two-dimensional numerical simulations. Our work involved optimizing the layer thicknesses and exploring advanced light-trapping techniques to enhance photogenerated current in both sub-cells. To reduce surface reflections on the top cell, we proposed a two-layer antireflection coating, composed of SiO<sub>2</sub>/Si<sub>3</sub>N<sub>4</sub>. Additionally, we implemented a 1D photonic crystal as a broadband back reflector within the solar cell. In order to balance the current density between the sub-cells and prevent carrier accumulation at the interface, we introduced a tunnel recombination junction (TRJ). This TRJ consisted of n-μc-Si:H/p-μc-Si:H layers with a thickness of 10 nm. Under global AM 1.5G conditions, our proposed cell structure exhibited impressive electrical characteristics, including an open-circuit voltage of 1.38 V, a short-circuit current density of 12.51 mA/cm<sup>2</sup>, and a fill factor of 80.82%. These attributes culminated in a remarkable total area conversion efficiency of 14%.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00174-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-024-00174-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00174-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过二维数值模拟全面评估了 a-Si:H/μc-Si:H 串联太阳能电池的性能。我们的工作包括优化层厚度和探索先进的光捕获技术,以增强两个子电池中的光生电流。为了减少顶部电池的表面反射,我们提出了一种由 SiO2/Si3N4 组成的双层抗反射涂层。此外,我们还在太阳能电池中采用了一维光子晶体作为宽带背反射器。为了平衡子电池之间的电流密度并防止载流子在界面上积聚,我们引入了隧道重组结(TRJ)。这个 TRJ 由厚度为 10 纳米的 n-μc-Si:H/p-μc-Si:H 层组成。在全球 AM 1.5G 条件下,我们提出的电池结构表现出令人印象深刻的电气特性,包括 1.38 V 的开路电压、12.51 mA/cm2 的短路电流密度和 80.82% 的填充因子。这些特性最终使总面积转换效率达到了 14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing efficiency in a-Si:H/μc-Si micromorph tandem solar cells through advanced light-trapping techniques using ARC, TRJ, and DBR

In this study, the performance of a-Si:H/μc-Si:H tandem solar cells was comprehensively assessed through two-dimensional numerical simulations. Our work involved optimizing the layer thicknesses and exploring advanced light-trapping techniques to enhance photogenerated current in both sub-cells. To reduce surface reflections on the top cell, we proposed a two-layer antireflection coating, composed of SiO2/Si3N4. Additionally, we implemented a 1D photonic crystal as a broadband back reflector within the solar cell. In order to balance the current density between the sub-cells and prevent carrier accumulation at the interface, we introduced a tunnel recombination junction (TRJ). This TRJ consisted of n-μc-Si:H/p-μc-Si:H layers with a thickness of 10 nm. Under global AM 1.5G conditions, our proposed cell structure exhibited impressive electrical characteristics, including an open-circuit voltage of 1.38 V, a short-circuit current density of 12.51 mA/cm2, and a fill factor of 80.82%. These attributes culminated in a remarkable total area conversion efficiency of 14%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信