Enhanced photo-induced optical activity of crisscrossed self-organized gratings in photosensitive nanolayers by introducing bi-periodicity

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Arashmid Nahal, Ozra Kiasatfar
{"title":"Enhanced photo-induced optical activity of crisscrossed self-organized gratings in photosensitive nanolayers by introducing bi-periodicity","authors":"Arashmid Nahal,&nbsp;Ozra Kiasatfar","doi":"10.1186/s40712-024-00167-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, the enhancement of photoinduced optical activity in a photosensitive nanolayer of AgCl doped by Ag nanoparticles, using bi-periodic crisscrossed self-organized periodic nanostructures (C-SPNs) is achieved. We found that the formation of two non-identical SPNs (i.e., with different periods), which crisscrossed each other, enhances the rotation of the polarization plane of the linear polarized probe beam, compared to the case when the two nanostructures are identical (i.e., having the same period). The difference in periods of the two C-SPNs increases the anisotropy of the medium, which in turn boosts the optical chirality produced by the formation of complex crisscrossed gratings made of Ag nanoparticles. The angle between the two gratings can be a control parameter for the amount and sign of rotation of the polarization plane of the probe beam. The enhanced optical activity of the bi-periodic C-SPNs, compared to the identical C-SPNs, can be attributed to the formation of more intricate chiral building blocks at the intersections of the two gratings.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00167-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00167-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, the enhancement of photoinduced optical activity in a photosensitive nanolayer of AgCl doped by Ag nanoparticles, using bi-periodic crisscrossed self-organized periodic nanostructures (C-SPNs) is achieved. We found that the formation of two non-identical SPNs (i.e., with different periods), which crisscrossed each other, enhances the rotation of the polarization plane of the linear polarized probe beam, compared to the case when the two nanostructures are identical (i.e., having the same period). The difference in periods of the two C-SPNs increases the anisotropy of the medium, which in turn boosts the optical chirality produced by the formation of complex crisscrossed gratings made of Ag nanoparticles. The angle between the two gratings can be a control parameter for the amount and sign of rotation of the polarization plane of the probe beam. The enhanced optical activity of the bi-periodic C-SPNs, compared to the identical C-SPNs, can be attributed to the formation of more intricate chiral building blocks at the intersections of the two gratings.

通过引入双周期性增强光敏纳米层中纵横交错自组织光栅的光诱导光学活性
在本研究中,我们利用双周期交错自组织周期性纳米结构(C-SPNs),在掺杂了银纳米颗粒的AgCl光敏纳米层中实现了光诱导光学活性的增强。我们发现,与两个纳米结构完全相同(即具有相同周期)的情况相比,形成两个相互交错的非相同 SPN(即具有不同周期)会增强线性偏振探针光束偏振面的旋转。两个C-SPN的周期差异增加了介质的各向异性,这反过来又增强了由银纳米颗粒形成的复杂十字光栅所产生的光学奇异性。两个光栅之间的角度可以作为探针光束偏振面旋转量和旋转符号的控制参数。与相同的 C-SPN 相比,双周期 C-SPN 的光学活性更强,这是因为在两个光栅的交叉处形成了更复杂的手性构件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信