通过实验调查评估基于细菌的自愈混凝土-一种可持续的方法

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akula Vishal, Akhilesh Chepuri, N. Chandana
{"title":"通过实验调查评估基于细菌的自愈混凝土-一种可持续的方法","authors":"Akula Vishal,&nbsp;Akhilesh Chepuri,&nbsp;N. Chandana","doi":"10.1186/s40712-025-00215-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using <i>Bacillus subtilis</i>. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of <i>B. subtilis</i> in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00215-w","citationCount":"0","resultStr":"{\"title\":\"Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach\",\"authors\":\"Akula Vishal,&nbsp;Akhilesh Chepuri,&nbsp;N. Chandana\",\"doi\":\"10.1186/s40712-025-00215-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using <i>Bacillus subtilis</i>. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of <i>B. subtilis</i> in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.</p></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00215-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-025-00215-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00215-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用枯草芽孢杆菌评价不同等级(M20、M25、M30)和细胞数(10^5和10^6细胞/ml)的细菌混凝土的破坏性和非破坏性强度参数。此外,对每种混合物进行了成本分析和成本效益比较。研究了枯草芽孢杆菌的高温抗性。研究结果表明,与传统混凝土相比,细菌混凝土的强度参数增加了25-40%。细菌混合物的速度始终高于4.45 km/s,表明其质量非常好,超过了传统的混凝土。值得注意的是,在所有等级中,细胞计数为10^5个细胞/ml的细菌表现出比10^6个细胞/ml更大的强度。Cantabro损失测试显示,细菌混凝土的磨损减少了15-25%。细菌样品在高温下的强度损失也明显降低。这项研究强调了基于细菌的自愈混凝土在特定建筑应用中的潜力,它具有耐高温、增强强度和减少磨损的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of bacteria-based self-healing concrete through experimental investigations — a sustainable approach

This study aims to evaluate the destructive and non-destructive strength parameters of bacterial concrete with different grades (M20, M25, M30) and cell counts (10^5 and 10^6 cells/ml) using Bacillus subtilis. Additionally, cost analysis and cost–benefit comparisons were conducted for each mix. The effectiveness of B. subtilis in resisting high temperatures was also examined. Findings indicate a 25–40% increase in strength parameters in bacterial concrete compared to conventional concrete. Bacterial mixes consistently showed velocities above 4.45 km/s, indicating excellent quality, surpassing conventional concrete. Notably, bacteria with a cell count of 10^5 cells/ml exhibited greater strength than 10^6 cells/ml across all grades. Cantabro loss tests revealed a 15–25% reduction in wear and tear for bacterial concrete. The bacterial specimens also showed significantly lower strength loss at higher temperatures. This study underscores the potential of bacterial-based self-healing concrete for specific construction applications, offering high temperature resistance, increased strength, and reduced wear and tear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信