International Journal of Mechanical and Materials Engineering最新文献

筛选
英文 中文
Preparation and characterisation of zirconia/hydroxyapatite bioactive composites as potential dental implants 氧化锆/羟基磷灰石生物活性复合材料的制备与表征
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-12-02 DOI: 10.1186/s40712-024-00186-4
Zhongyuan Xing, Yongxin Pang, Eric Li, Jian Yong Zhang, Donglai Xu
{"title":"Preparation and characterisation of zirconia/hydroxyapatite bioactive composites as potential dental implants","authors":"Zhongyuan Xing,&nbsp;Yongxin Pang,&nbsp;Eric Li,&nbsp;Jian Yong Zhang,&nbsp;Donglai Xu","doi":"10.1186/s40712-024-00186-4","DOIUrl":"10.1186/s40712-024-00186-4","url":null,"abstract":"<div><p>In dental implants, zirconia is well-known as a crown material due to its excellent acid and base resistances and appearance close to natural teeth. In addition, its extraordinary mechanical properties render zirconia to be a potential candidate as an implant component of a whole implanted tooth, if its biocompatibility can be improved to promote adhesion to natural hard tissues. This study aims to enhance the bioactivity of zirconia with the aim of improving its integration with gum bone. Hydroxyapatite is the major component of natural bone and is thus selected as the modifier to improve the bioactivity of zirconia. A series of zirconia/hydroxyapatite composites with varied compositions were prepared under different conditions in order to find the optimal composites for the target application. Various analytical technologies and mechanical tests are employed to characterise the structure and properties of resultant composites. Results show that the component ratio and sintering temperature have a significant influence on the composite properties. An increase in hydroxyapatite component tends to enhance bioactivity but decline mechanical strength. Composites containing 10 wt% of hydroxyapatite maintain sufficient mechanical strength under the optimal sintering conditions whilst possessing excellent bioactivity, demonstrating that hydroxyapatite-modified zirconia has the potential as dental implant materials. Sintering results suggest that mechanical strength is obtained at 1400 °C for 2 h for the composite containing 10 wt% of hydroxyapatite.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00186-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of feed rate during induction hardening on the hardening depth, microstructure, and wear properties of tool-grade steel work roll 感应淬火过程中的进给量对工具级钢工作辊的淬火深度、显微组织和磨损性能的影响
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-27 DOI: 10.1186/s40712-024-00193-5
A. Šapek, M. Kalin, M. Godec, Č. Donik, B. Markoli
{"title":"Effect of feed rate during induction hardening on the hardening depth, microstructure, and wear properties of tool-grade steel work roll","authors":"A. Šapek,&nbsp;M. Kalin,&nbsp;M. Godec,&nbsp;Č. Donik,&nbsp;B. Markoli","doi":"10.1186/s40712-024-00193-5","DOIUrl":"10.1186/s40712-024-00193-5","url":null,"abstract":"<div><p>Rolls are the most critical yet vulnerable parts of cold rolling mills. It is crucial for them to withstand long rolling campaigns without losing surface roughness or incurring damage. Newly developed rolls are made from tool-grade steel with high roughness, lower wear, and high damage resistance. One of the most important advantages is the elimination of the need for chrome plating, which is currently widely used on standard steel rolls but is ecologically harmful. We investigated a type of steel with 8% chromium for use in cold rolling using light optical microscopy (LOM), X-ray crystallography (XRD), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), hardness measurements, and tribological tests. In this study, a roll with a diameter of 325 mm was electro-slag remelted and forged, machined to a diameter of 305 mm, and quenched and tempered to simulate industrial roll production. A forged roll was induction heated and hardened at four different feed rates (i.e., 24 mm/min, 30 mm/min, 36 mm/min, and 42 mm/min), tempered at 515℃ for 24h and again at 480℃ for 24h, and dissected for in-depth analysis. We identified a clear relationship between the feed rate of the roll during induction hardening and the depth of hardness, the sizes of carbides, and the wear properties of the roll. By reducing the feed rate of the roll through the inductor, we increased the depth of the hardened layer from 16 mm (at a feed rate of 36 mm/min) to 25 mm (at a feed rate of 24 mm/min), which is a 56.25% increase. Such an increase is expected to extend the lifespan of the working roll without having negative effects on the wear resistance and other important parameters. XRD analysis showed that the sample had a 0.4% residual austenite, which means it had a significantly lower risk of roll damage during operation than standard steel grades</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00193-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of wood modification on parameter settings and treatment results in CO2 laser structuring of beech veneers 木材改性对 CO2 激光加工榉木单板的参数设置和处理结果的影响
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-26 DOI: 10.1186/s40712-024-00192-6
Güneş Akın Doğan, Richard Wascher, Georg Avramidis, Wolfgang Viöl, Christoph Gerhard
{"title":"Influence of wood modification on parameter settings and treatment results in CO2 laser structuring of beech veneers","authors":"Güneş Akın Doğan,&nbsp;Richard Wascher,&nbsp;Georg Avramidis,&nbsp;Wolfgang Viöl,&nbsp;Christoph Gerhard","doi":"10.1186/s40712-024-00192-6","DOIUrl":"10.1186/s40712-024-00192-6","url":null,"abstract":"<div><p>In this study, the possible influences of thermal modification of wood on the quality of laser texturing of beech veneers are investigated by comparing native and thermally modified samples. By varying the process parameters of a CO<sub>2</sub> laser, the surfaces of both types of veneer were textured and the resulting surface roughness and aspect ratios were analyzed in order to evaluate the efficiency of the laser texturing and the quality of the textures produced. The main results show that the thermal modification of the wood influences the cutting widths, the removal depths, and the surface roughness, with thermally modified veneers generally having larger cutting widths and different removal depths compared to native veneers, indicating the influence of the wood modifications on the material physical and chemical properties and their interaction with the laser processing. Furthermore, the study shows how the laser processing parameters—feed rate and laser power—influence the surface quality and structural dimensions of the engraved lines, and establishes that the moisture content of the wood has a significant influence on its thermal conductivity and thus on the laser cutting process. The research work highlights the complexity of laser texturing of wood and emphasizes the need to take into account the change in the intrinsic properties of the material as a result of thermal modification.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00192-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of titanium oxynitride catalyst via direct ammonia nitridation of titanium polyacrylate for oxygen reduction reaction 通过氨氮直接氮化聚丙烯酸钛制备用于氧还原反应的氮化钛催化剂的合成与表征
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-18 DOI: 10.1186/s40712-024-00189-1
Yushi Tamaki, Satoshi Seino, Naoki Shinyoshi, Yuta Uetake, Takaaki Nagai, Ryuji Monden, Akimitsu Ishihara, Takashi Nakagawa
{"title":"Synthesis and characterization of titanium oxynitride catalyst via direct ammonia nitridation of titanium polyacrylate for oxygen reduction reaction","authors":"Yushi Tamaki,&nbsp;Satoshi Seino,&nbsp;Naoki Shinyoshi,&nbsp;Yuta Uetake,&nbsp;Takaaki Nagai,&nbsp;Ryuji Monden,&nbsp;Akimitsu Ishihara,&nbsp;Takashi Nakagawa","doi":"10.1186/s40712-024-00189-1","DOIUrl":"10.1186/s40712-024-00189-1","url":null,"abstract":"<div><p>A titanium oxynitride catalyst for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells was synthesized through the direct ammonia nitridation of titanium complexes. Titanium polyacrylate was employed as the catalyst precursor, and the effect of the calcination temperature between 600 and 1000 °C on the catalyst structure was studied. The catalysts were characterized via X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy, cyclic voltammetry, and powder electrical resistivity measurements. The formation of titanium oxynitride particles and deposited carbon was observed for all the samples; however, significant variations in the catalyst structure and catalytic activity were also observed. With an increase in the calcination temperature, nitridation of titanium oxynitride progressed, and the conductivity of the catalyst powder increased. The highest rest potential and ORR current density were achieved with calcination at 800 °C. Importantly, the results suggest that maintaining an optimal nitrogen doping level within the catalyst particles, along with ensuring the formation of electroconductive deposited carbon, is essential for achieving a high ORR current. This work introduces the direct ammonia nitridation of metal complexes as a promising process for designing metal oxynitride catalysts.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00189-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some studies on Abelmoschus esculentus (Indian Okra) fiber characteristics 关于印度秋葵纤维特征的一些研究
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-15 DOI: 10.1186/s40712-024-00188-2
Prafull Prabhakar Kolte, Vijay Sitaram Shivankar
{"title":"Some studies on Abelmoschus esculentus (Indian Okra) fiber characteristics","authors":"Prafull Prabhakar Kolte,&nbsp;Vijay Sitaram Shivankar","doi":"10.1186/s40712-024-00188-2","DOIUrl":"10.1186/s40712-024-00188-2","url":null,"abstract":"<div><p>Okra fiber is the bast fiber, extracted from the stem of the Abelmoschus esculentus plant which belongs to the Malvaceae family. In the whole world, India is the largest producer of okra for the cultivation of “okra fruit”, which is one of the main vegetables in the Indian Diet. After collecting vegetables, a huge amount of okra plant stem is discarded on the field annually as agricultural waste. Okra stem is an abundant source of okra fiber which can be used for various textile applications. This study aims understand the basic morphological, thermal and structural characteristics of okra fibre and compare it with other bast fibres generally used for textile application to prove the suitability of okra fibre for textile application.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00188-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geothermo-mechanical energy conversion using shape memory alloy heat engine 利用形状记忆合金热机进行地热-机械能转换
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-11 DOI: 10.1186/s40712-024-00185-5
Abubakar R. A., Nuhu I.
{"title":"Geothermo-mechanical energy conversion using shape memory alloy heat engine","authors":"Abubakar R. A.,&nbsp;Nuhu I.","doi":"10.1186/s40712-024-00185-5","DOIUrl":"10.1186/s40712-024-00185-5","url":null,"abstract":"<div><p>The shift towards renewable energy sources like geothermal energy has become desirable due to the recurrent energy crisis and global warming challenges influenced by fossil fuels. Geothermo-mechanical energy conversion using shape memory alloy (SMA) heat engines presents a novel and sustainable approach for harnessing geothermal energy. Shape memory alloys, known for their ability to undergo reversible phase transformations driven by temperature changes, are ideal for thermal-to-mechanical energy conversion. This paper explores the design and performance of an SMA heat engine that utilizes geothermal heat sources to drive mechanical work. The engine operates by cycling between the high-temperature geothermal environment and a cooler sink, exploiting the shape memory effect to generate mechanical motion. By integrating geothermal energy and SMA technology, this system offers a potential solution for renewable energy generation, with applications in remote or off-grid locations. The paper also investigates output power and the thermodynamic efficiency. A model is formulated and the engine behavior is simulated. A series of experiments are conducted for engine output power and efficiency. The model is compared to the experimental data for validation. The engine developed a maximum power of 3.5, 8.5, and 11.5 watts at 60, 80, and 90 °C respectively. The proposed SMA-based geothermo-mechanical energy conversion system offers a promising solution for efficient, reliable, and scalable geothermal energy harvesting. This research contributes to the development of innovative, efficient geothermal energy conversion technologies, supporting global renewable energy goals and reducing greenhouse gas emissions. This innovative energy conversion mechanism could play a key role in the future of sustainable power generation.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00185-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphitic carbon nitride-modified cerium ferrite: an efficient photocatalyst for the degradation of ciprofloxacin, ampicillin, and erythromycin in aqueous solution 氮化石墨碳修饰的铁氧体铈:降解水溶液中环丙沙星、氨苄西林和红霉素的高效光催化剂
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-11-06 DOI: 10.1186/s40712-024-00183-7
Adewale Adewuyi, Rotimi A. Oderinde
{"title":"Graphitic carbon nitride-modified cerium ferrite: an efficient photocatalyst for the degradation of ciprofloxacin, ampicillin, and erythromycin in aqueous solution","authors":"Adewale Adewuyi,&nbsp;Rotimi A. Oderinde","doi":"10.1186/s40712-024-00183-7","DOIUrl":"10.1186/s40712-024-00183-7","url":null,"abstract":"<div><p>Incomplete removal of antibiotics by most known wastewater treatment plants is a global challenge. Therefore, graphitic carbon nitride-modified cerium ferrite (CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub>) was synthesized to remove antibiotics (ampicillin, ciprofloxacin and erythromycin) from water. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> showed activity in the visible light with a Tauc plot revealing the bandgap energy (2.46 eV). The scanning electron micrograph (SEM) result revealed the surface of CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> to be heterogeneous, while the transmission electron micrograph (TEM) image confirmed a flaky with rod and oval shaped surface (average particle size of 42.22 nm). CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> exhibited a 100% removal of all the studied antibiotics from aqueous solution in a photocatalytic degradation that is described by pseudo-1st-order kinetics. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> demonstrated a high regeneration capacity, which is above 90% at the 12th cycle of treatment without any observable changes in its phase structure which suggests a promising chemical stability and reusability. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> compared favourably with some selected antibiotic degradable photocatalysts suggesting the economic viable of CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> as photocatalyst for the purification of antibiotics-contaminated water.\u0000</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00183-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of glass sealants for proton conducting ceramic cells: materials, concepts and challenges 质子传导陶瓷电池玻璃密封剂的开发:材料、概念和挑战
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-10-28 DOI: 10.1186/s40712-024-00184-6
Xanthi Georgolamprou, Ilaria Ritucci, Stéven Pirou, Ragnar Kiebach
{"title":"Development of glass sealants for proton conducting ceramic cells: materials, concepts and challenges","authors":"Xanthi Georgolamprou,&nbsp;Ilaria Ritucci,&nbsp;Stéven Pirou,&nbsp;Ragnar Kiebach","doi":"10.1186/s40712-024-00184-6","DOIUrl":"10.1186/s40712-024-00184-6","url":null,"abstract":"<div><p>In this study, we have successfully developed and tested sealing concepts for symmetrical, planar proton-conducting ceramic cells (PCCCs). Three glass sealants from the field of solid oxide cells were investigated as potential compatible sealing materials for PCCCs. The most promising results were obtained with a SiO<sub>2</sub>-MgO-CaO-Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-B<sub>2</sub>O<sub>3</sub> glass, which provided a dense, crack-free sealant between the proton-conducting ceramic cells and the Al<sub>2</sub>O<sub>3</sub>-coated ferritic steels. During the sealing process, a reaction layer between the interface of the BaCe<sub>0.2</sub>Zr<sub>0.7</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> contained in the PCCCs and the glass–ceramic, occurred. Here, we propose a reaction mechanism for this interaction and discuss its impact on potential applications. Moreover, next to evaluating potential glass sealants, we have successfully designed and demonstrated a new sealing geometry that prevents a potential gas crossover in the symmetrical proton-conducting ceramic cell.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00184-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse 基于甘蔗纤维和甘蔗渣的新型声学微穿孔板 (MPP)
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-09-27 DOI: 10.1186/s40712-024-00173-9
Mohammad Hosein Beheshti, Ali Khavanin, Mostafa Jafarizaveh, Akram Tabrizi
{"title":"A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse","authors":"Mohammad Hosein Beheshti,&nbsp;Ali Khavanin,&nbsp;Mostafa Jafarizaveh,&nbsp;Akram Tabrizi","doi":"10.1186/s40712-024-00173-9","DOIUrl":"10.1186/s40712-024-00173-9","url":null,"abstract":"<div><p>Natural materials are becoming a reliable alternative to traditional artificial materials used in sound absorption insulation. The present study was conducted to investigate the acoustic insulation of micro-perforated panel (MPP) based on sugarcane fibers and bagasse as an available and environmentally friendly material. The absorption properties of single- and double-leaf natural micro-perforated panels (MPP) made of bagasse and also nonnatural MPPs made of Plexiglass were measured using an impedance tube based on ISO 10534–2. Then the effect of bagasse and sugarcane fibers composite on the air gap of MPP was investigated. The results showed the peak sound absorption of the bagasse composite is in the range of 1000 to 2000 Hz, and the sugarcane fiber composite has a higher sound absorption coefficient than the bagasse composite. Also, natural MPPs have a higher absorption coefficient than nonnatural MPPs at all frequencies, and as the panel thickness increases, the peak absorption coefficient shifts to lower frequencies. The peak sound absorption coefficient of double-leaf MPPs made of bagasse is 76%, in the range of 160 to 200 Hz. Using sugarcane fiber composite in the air gap of single- and double-leaf natural MPPs causes the absorption peak to shift to frequencies below 100 Hz. According to the results, natural MPPs have a high sound absorption coefficient at low frequencies. These panels can control sounds with much lower frequencies, especially in a double layer and along with cane fiber composite in their air gap.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00173-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biopolymer-based composites for sustainable energy storage: recent developments and future outlook 用于可持续能源储存的生物聚合物基复合材料:最新发展与未来展望
IF 3.4
International Journal of Mechanical and Materials Engineering Pub Date : 2024-09-27 DOI: 10.1186/s40712-024-00181-9
Niranjan Patra, Prathipati Ramesh, Vaishnavi Donthu, Akil Ahmad
{"title":"Biopolymer-based composites for sustainable energy storage: recent developments and future outlook","authors":"Niranjan Patra,&nbsp;Prathipati Ramesh,&nbsp;Vaishnavi Donthu,&nbsp;Akil Ahmad","doi":"10.1186/s40712-024-00181-9","DOIUrl":"10.1186/s40712-024-00181-9","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>Over the past decade, biopolymers made from renewable resources like plants, algae, seashell waste, and seaweed have become increasingly popular as industries strive to reduce their environmental pollution without compromising socioeconomic growth. Biopolymers are often regarded as a significant alternative to conventional materials due to their low weight, great strength, stiffness, biostability, and non-toxicity. Therefore, industries are beginning to adopt the use of biopolymers, including those dealing with packaging, agriculture, automobiles, healthcare, as well as energy harvesting. Supercapacitors and batteries are two examples of electrochemical devices for energy storage that can be made using bespoke biopolymers and their composites. Although biopolymers’ potential uses are restricted, they are nevertheless useful when combined with other materials to create composites. This boosts the electrochemical efficiency of the biologically active molecules and also enhances their inherent physical features. This review focuses on recent developments, specifically the use of diverse biopolymers and composites for batteries and supercapacitor applications, followed by future perspectives.</p></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00181-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信