Sol–gel synthesis of silicon oxide (SiO2) nanoparticles: exploring gas sensing and photocatalytic applications

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Laxmi D. Sonawane, Abhinay S. Mandawade, Anil B. Gite, Sarika D. Shinde, Ganesh E. Patil, Latesh K. Nikam, Vishal H. Goswami, Ramesh B. Bhise, Pradip B. Sarawade, Mahendra S. Shinde
{"title":"Sol–gel synthesis of silicon oxide (SiO2) nanoparticles: exploring gas sensing and photocatalytic applications","authors":"Laxmi D. Sonawane,&nbsp;Abhinay S. Mandawade,&nbsp;Anil B. Gite,&nbsp;Sarika D. Shinde,&nbsp;Ganesh E. Patil,&nbsp;Latesh K. Nikam,&nbsp;Vishal H. Goswami,&nbsp;Ramesh B. Bhise,&nbsp;Pradip B. Sarawade,&nbsp;Mahendra S. Shinde","doi":"10.1186/s40712-025-00209-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, silicon oxide (SiO<sub>2</sub>) nanoparticles (NPs) were synthesized using the sol–gel method. The synthesized materials were characterized through various techniques. Fourier transform infrared spectroscopy (FTIR) revealed the absorption band corresponding to Si–O–Si bonds. Ultraviolet–visible (UV–Vis) spectroscopy analysis indicated a band gap energy of 5 eV. X-ray diffraction (XRD) analysis displayed a broad peak, confirming the amorphous nature of the material. Field emission scanning electron microscopy (FESEM) further demonstrated a spherical morphology of the SiO<sub>2</sub> NPs. The photocatalytic degradation of MB dye using SiO<sub>2</sub> NPs has been examined, revealing promising and improved degradation properties. Even a small amount of SiO<sub>2</sub> NPs achieved around 69.20% degradation of MB within 240 min, with the rate constant for the material being 0.001 min<sup>−1</sup>. The gas sensing properties of the SiO<sub>2</sub> NPs were tested on domestic gas sensor units for different gases, including ethanol, methanol, CO<sub>2</sub>, LPG, H<sub>2</sub>S, NH<sub>3</sub>, O<sub>2</sub>, and Cl<sub>2</sub>, at temperatures ranging from room temperature to 300 °C. Among these materials, SiO₂ NPs displayed the strongest response to H₂S gas, showing outstanding gas-sensing performance at a concentration of 100 ppm. The response time was 18 S, with a quick recovery time of approximately 22 S.\n</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00209-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00209-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, silicon oxide (SiO2) nanoparticles (NPs) were synthesized using the sol–gel method. The synthesized materials were characterized through various techniques. Fourier transform infrared spectroscopy (FTIR) revealed the absorption band corresponding to Si–O–Si bonds. Ultraviolet–visible (UV–Vis) spectroscopy analysis indicated a band gap energy of 5 eV. X-ray diffraction (XRD) analysis displayed a broad peak, confirming the amorphous nature of the material. Field emission scanning electron microscopy (FESEM) further demonstrated a spherical morphology of the SiO2 NPs. The photocatalytic degradation of MB dye using SiO2 NPs has been examined, revealing promising and improved degradation properties. Even a small amount of SiO2 NPs achieved around 69.20% degradation of MB within 240 min, with the rate constant for the material being 0.001 min−1. The gas sensing properties of the SiO2 NPs were tested on domestic gas sensor units for different gases, including ethanol, methanol, CO2, LPG, H2S, NH3, O2, and Cl2, at temperatures ranging from room temperature to 300 °C. Among these materials, SiO₂ NPs displayed the strongest response to H₂S gas, showing outstanding gas-sensing performance at a concentration of 100 ppm. The response time was 18 S, with a quick recovery time of approximately 22 S.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信