溶胶-凝胶法合成氧化硅纳米颗粒:探索气体传感和光催化应用

IF 3.4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Laxmi D. Sonawane, Abhinay S. Mandawade, Anil B. Gite, Sarika D. Shinde, Ganesh E. Patil, Latesh K. Nikam, Vishal H. Goswami, Ramesh B. Bhise, Pradip B. Sarawade, Mahendra S. Shinde
{"title":"溶胶-凝胶法合成氧化硅纳米颗粒:探索气体传感和光催化应用","authors":"Laxmi D. Sonawane,&nbsp;Abhinay S. Mandawade,&nbsp;Anil B. Gite,&nbsp;Sarika D. Shinde,&nbsp;Ganesh E. Patil,&nbsp;Latesh K. Nikam,&nbsp;Vishal H. Goswami,&nbsp;Ramesh B. Bhise,&nbsp;Pradip B. Sarawade,&nbsp;Mahendra S. Shinde","doi":"10.1186/s40712-025-00209-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, silicon oxide (SiO<sub>2</sub>) nanoparticles (NPs) were synthesized using the sol–gel method. The synthesized materials were characterized through various techniques. Fourier transform infrared spectroscopy (FTIR) revealed the absorption band corresponding to Si–O–Si bonds. Ultraviolet–visible (UV–Vis) spectroscopy analysis indicated a band gap energy of 5 eV. X-ray diffraction (XRD) analysis displayed a broad peak, confirming the amorphous nature of the material. Field emission scanning electron microscopy (FESEM) further demonstrated a spherical morphology of the SiO<sub>2</sub> NPs. The photocatalytic degradation of MB dye using SiO<sub>2</sub> NPs has been examined, revealing promising and improved degradation properties. Even a small amount of SiO<sub>2</sub> NPs achieved around 69.20% degradation of MB within 240 min, with the rate constant for the material being 0.001 min<sup>−1</sup>. The gas sensing properties of the SiO<sub>2</sub> NPs were tested on domestic gas sensor units for different gases, including ethanol, methanol, CO<sub>2</sub>, LPG, H<sub>2</sub>S, NH<sub>3</sub>, O<sub>2</sub>, and Cl<sub>2</sub>, at temperatures ranging from room temperature to 300 °C. Among these materials, SiO₂ NPs displayed the strongest response to H₂S gas, showing outstanding gas-sensing performance at a concentration of 100 ppm. The response time was 18 S, with a quick recovery time of approximately 22 S.\n</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00209-8","citationCount":"0","resultStr":"{\"title\":\"Sol–gel synthesis of silicon oxide (SiO2) nanoparticles: exploring gas sensing and photocatalytic applications\",\"authors\":\"Laxmi D. Sonawane,&nbsp;Abhinay S. Mandawade,&nbsp;Anil B. Gite,&nbsp;Sarika D. Shinde,&nbsp;Ganesh E. Patil,&nbsp;Latesh K. Nikam,&nbsp;Vishal H. Goswami,&nbsp;Ramesh B. Bhise,&nbsp;Pradip B. Sarawade,&nbsp;Mahendra S. Shinde\",\"doi\":\"10.1186/s40712-025-00209-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, silicon oxide (SiO<sub>2</sub>) nanoparticles (NPs) were synthesized using the sol–gel method. The synthesized materials were characterized through various techniques. Fourier transform infrared spectroscopy (FTIR) revealed the absorption band corresponding to Si–O–Si bonds. Ultraviolet–visible (UV–Vis) spectroscopy analysis indicated a band gap energy of 5 eV. X-ray diffraction (XRD) analysis displayed a broad peak, confirming the amorphous nature of the material. Field emission scanning electron microscopy (FESEM) further demonstrated a spherical morphology of the SiO<sub>2</sub> NPs. The photocatalytic degradation of MB dye using SiO<sub>2</sub> NPs has been examined, revealing promising and improved degradation properties. Even a small amount of SiO<sub>2</sub> NPs achieved around 69.20% degradation of MB within 240 min, with the rate constant for the material being 0.001 min<sup>−1</sup>. The gas sensing properties of the SiO<sub>2</sub> NPs were tested on domestic gas sensor units for different gases, including ethanol, methanol, CO<sub>2</sub>, LPG, H<sub>2</sub>S, NH<sub>3</sub>, O<sub>2</sub>, and Cl<sub>2</sub>, at temperatures ranging from room temperature to 300 °C. Among these materials, SiO₂ NPs displayed the strongest response to H₂S gas, showing outstanding gas-sensing performance at a concentration of 100 ppm. The response time was 18 S, with a quick recovery time of approximately 22 S.\\n</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00209-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-025-00209-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00209-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用溶胶-凝胶法制备了氧化硅纳米颗粒(SiO2)。通过各种技术对合成材料进行了表征。傅里叶变换红外光谱(FTIR)揭示了Si-O-Si键对应的吸收带。紫外-可见(UV-Vis)光谱分析表明带隙能量为5 eV。x射线衍射(XRD)分析显示出宽峰,证实了材料的无定形性质。场发射扫描电镜(FESEM)进一步证实了SiO2纳米颗粒的球形形貌。研究了二氧化硅纳米粒子对MB染料的光催化降解,揭示了其良好的降解性能。即使是少量的SiO2 NPs,在240 min内对MB的降解也达到了69.20%左右,材料的速率常数为0.001 min−1。在家用气体传感器装置上测试了SiO2 NPs在室温至300℃范围内对不同气体的气敏性能,包括乙醇、甲醇、CO2、LPG、H2S、NH3、O2和Cl2。在这些材料中,SiO₂NPs对H₂S气体的响应最强,在浓度为100 ppm时表现出优异的气敏性能。反应时间为18 S,快速恢复时间约为22 S
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sol–gel synthesis of silicon oxide (SiO2) nanoparticles: exploring gas sensing and photocatalytic applications

In this research, silicon oxide (SiO2) nanoparticles (NPs) were synthesized using the sol–gel method. The synthesized materials were characterized through various techniques. Fourier transform infrared spectroscopy (FTIR) revealed the absorption band corresponding to Si–O–Si bonds. Ultraviolet–visible (UV–Vis) spectroscopy analysis indicated a band gap energy of 5 eV. X-ray diffraction (XRD) analysis displayed a broad peak, confirming the amorphous nature of the material. Field emission scanning electron microscopy (FESEM) further demonstrated a spherical morphology of the SiO2 NPs. The photocatalytic degradation of MB dye using SiO2 NPs has been examined, revealing promising and improved degradation properties. Even a small amount of SiO2 NPs achieved around 69.20% degradation of MB within 240 min, with the rate constant for the material being 0.001 min−1. The gas sensing properties of the SiO2 NPs were tested on domestic gas sensor units for different gases, including ethanol, methanol, CO2, LPG, H2S, NH3, O2, and Cl2, at temperatures ranging from room temperature to 300 °C. Among these materials, SiO₂ NPs displayed the strongest response to H₂S gas, showing outstanding gas-sensing performance at a concentration of 100 ppm. The response time was 18 S, with a quick recovery time of approximately 22 S.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信