{"title":"Highlights of mainstream solar cell efficiencies in 2024","authors":"Wenzhong Shen, Yixin Zhao, Feng Liu","doi":"10.1007/s11708-025-0985-5","DOIUrl":"10.1007/s11708-025-0985-5","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"8 - 17"},"PeriodicalIF":3.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface frustrated Lewis pairs in perovskite enhance photocatalytic non-oxidative conversion of ethane","authors":"Wei Sun, Shenghua Wang","doi":"10.1007/s11708-025-0982-8","DOIUrl":"10.1007/s11708-025-0982-8","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"413 - 416"},"PeriodicalIF":6.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research Institute of Carbon Neutrality, Shanghai Jiao Tong University
{"title":"Top 8 most influential events in global carbon neutrality and climate change response in 2024","authors":"Research Institute of Carbon Neutrality, Shanghai Jiao Tong University","doi":"10.1007/s11708-025-0981-9","DOIUrl":"10.1007/s11708-025-0981-9","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"1 - 3"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering Fronts 2024 announced engineering fronts in the fields of Energy and Electrical Science and Technology","authors":"Liang Yin, Ruiqin Liu, Yonglin Ju","doi":"10.1007/s11708-025-0980-x","DOIUrl":"10.1007/s11708-025-0980-x","url":null,"abstract":"","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"4 - 7"},"PeriodicalIF":3.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progressive topology-curvature optimization of flow channel for PEMFC and performance assessment","authors":"Naixiao Wang, Youliang Cheng, Xiaochao Fan, Rui Ding, Honglian Zhou, Chaoshan Xin, Ruijing Shi","doi":"10.1007/s11708-025-0978-4","DOIUrl":"10.1007/s11708-025-0978-4","url":null,"abstract":"<div><p>The curved bending regions of serpentine flow channels play a crucial role in mass transfer and the overall performance of the flow field in proton exchange membrane fuel cells (PEMFCs). This paper proposes a “2D Topology-Curvature Optimization” progressive design method to optimize the bend area structures, aiming to enhance PEMFC performance. Through numerical simulations, it compares the topology-curvature optimization model with both the algorithm-based optimization model and a validation model, and analyzes the mass transfer, heat transfer characteristics, and output performance of PEMFC under different flow fields. The results indicate that the optimized structures improve convection and diffusion within the flow field, effectively enhancing the transport and distribution of oxygen and water within the PEMFC. Performance improvements, ranked from highest to lowest, are TS-III > MD-G (Model-GA) > MD-P (Model-PSO) > TS-II > TS-I. Among the optimized models, TS-III (Topology Structure-III) exhibits the greatest increases in peak current density and peak power density, with improvement of 4.72% and 3.12%, respectively. When considering the relationship between performance improvement and pressure drop using the efficiency evaluation criterion (EEC), TS-II demonstrates the best overall performance.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"395 - 412"},"PeriodicalIF":6.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance evaluation and optimization of a novel compressed CO2 energy storage system based on gas-liquid phase change and cold-electricity cogeneration","authors":"Ding Wang, Jiahua Wu, Shizhen Liu, Dongbo Shi, Yonghui Xie","doi":"10.1007/s11708-025-0973-9","DOIUrl":"10.1007/s11708-025-0973-9","url":null,"abstract":"<div><p>Compressed CO<sub>2</sub> energy storage (CCES) system has received widespread attention due to its superior performance. This paper proposes a novel CCES concept based on gas-liquid phase change and cold-electricity cogeneration. Thermodynamic and exergoeconomic analyses are performed under simulation conditions, followed by an investigation of the impacts of various decision parameters on the proposed system. Next, a multi-objective optimization is conducted with the total energy efficiency and total product unit cost as the objective functions. Finally, brief comparisons are made between the proposed system and existing systems. The results indicate that the total energy efficiency of the proposed system reaches 79.21% under the given simulation conditions, outperforming the electrical efficiency of 61.27%. Additionally, the total product unit cost of the system is 25.61 $/GJ. A key component, T1, plays an important role due to its large exergy destruction rate (1.0591 MW) and total investment cost rate (154.85 $/h). Despite this, the exergoeconomic factors of T1 is only 41.08%, indicating that investing in T1 to improve the efficiency is practicable. The analysis shows that a lower CO<sub>2</sub> condensation temperature benefits the proposed system performance. While improving the isentropic efficiencies of the compressors and turbines enhances total energy efficiency, excessive isentropic efficiencies can lead to a significant increase in total product unit cost. Through multi-objective optimization, an optimal favorable operating condition is identified, yielding a compromise result with a total energy efficiency of 111.91% and a total product unit cost of 28.35 $/GJ. The proposed CCES system efficiently delivers both power and cooling energy, demonstrating clear superiorities over previous systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 2","pages":"205 - 226"},"PeriodicalIF":3.1,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly efficient operation of an innovative SOFC powered all-electric ship system using quick approach for ammonia to hydrogen","authors":"Xiaojing Lv, Peiran Hong, Jiale Wen, Yi Ma, Catalina Spataru, Yiwu Weng","doi":"10.1007/s11708-025-0974-8","DOIUrl":"10.1007/s11708-025-0974-8","url":null,"abstract":"<div><p>The solid oxide fuel cell (SOFC) power system fueled by NH<sub>3</sub> is considered one of the most promising solutions for achieving ship decarbonization and carbon neutrality. This paper addresses the technical challenges faced by NH<sub>3</sub> fuel SOFC ship power system, including slow hydrogen (H<sub>2</sub>) production, low efficiency, and limited space. It introduces an innovative a NH<sub>3</sub>-integrated reactor for rapid H<sub>2</sub> production, establishes a safe and efficient all-electric SOFC all-electric propulsion system adaptable to various sailing conditions. The system is validated using a 2 kW prototype experimental rig. Results show that the SOFC system, designed for a target ship, has a rated power of 96 kW and an electrical efficiency of 60.13%, meeting the requirements for rated cruising conditions. Under identical catalytic scenarios, the designed reactor, with highly efficient heat transfer, measuring 1.1 m in length, can achieve complete NH<sub>3</sub> decomposition within 2.94 s, representing a 35% reduction in cracking time and a 42% decrease in required cabin space. During high-load voyage conditions, adjusting the circulation ratio (CR) and ammonia-oxygen ratio (A/O) improves system efficiency across a wide operational range. Among these adjustments, altering the A/O ratio proves to be the most efficient strategy. Under this configuration, the system achieves an efficiency of 55.02% at low load and 61.73% at high load, allowing operation across a power range of 20% to 110%. Experimental results indicate that the error for NH<sub>3</sub> cracking H<sub>2</sub> is less than 3% within the range of 570–700 °C, which is relevant to typical ship operation scenarios. At 656 °C, the NH<sub>3</sub> cracking H<sub>2</sub> rate reaches 100%. Under these conditions, the SOFC produces 2.045 kW of power with an efficiency of approximately 58.66%. The noise level detected is 58.6 dB, while the concentrations of CO<sub>2</sub>, NO, and SO<sub>2</sub> in the flue gas approach zero. These findings support the transition of the shipping industry to green, clean systems, contributing significantly to future reductions in ocean carbon emissions.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"365 - 381"},"PeriodicalIF":6.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional numerical simulation of melting characteristics of phase change materials embedded with various TPMS skeletons","authors":"Pengzhen Zhu, Baoming Chen, Liyan Sui, Hongchen Li, Kun Li, Yu Jian","doi":"10.1007/s11708-024-0967-z","DOIUrl":"10.1007/s11708-024-0967-z","url":null,"abstract":"<div><p>Phase change energy storage technology has great potential for enhancing the efficient conversion and storage of energy. While triply periodic minimal surface (TPMS) structures have shown promise in improving heat transfer, research on their application in phase change heat transfer remains limited. This paper presents numerical simulations of composite phase change materials (PCMs) featuring TPMS skeletons, specifically gyroid, diamond, primitive, and I-graph and wrapped package-graph (I-WP) utilizing the lattice Boltzmann method (LBM). A comparative analysis of the effects of four TPMS skeletons on enhancing the phase change process reveals that the PCM containing the gyroid skeleton melts the fastest, with a complete melting time of 24.1% shorter than that of the PCM containing the I-WP skeleton. The PCM containing the gyroid skeleton is further simulated to explore the effects of the Rayleigh (<i>Ra</i>) number, Prandtl (<i>Pr</i>) number, and Stefan (<i>Ste</i>) number on the melting characteristics. Notably, the complete melting time is reduced by 60.44% when <i>Ra</i> is increased to 10<sup>6</sup> compared to the case with <i>Ra</i> at 10<sup>4</sup>. Increasing the <i>Pr</i> number accelerates the migration of the mushy zone, resulting in fast melting. Conversely, the convective heat transfer effect from the heating surface decreases as the <i>Ste</i> number increases. The temperature differences caused by the local thermal non-equilibrium (LTNE) effect over time are significant and complex, with peaks becoming more pronounced nearer the heating surface. This study intends to provide theoretical support for the further development of TPMS skeletons in enhancing the phase change process.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 2","pages":"157 - 174"},"PeriodicalIF":3.1,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang
{"title":"Performance enhancement, economic analysis, and futuristic insight of single-well medium-deep and deep geothermal systems","authors":"Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang","doi":"10.1007/s11708-024-0971-3","DOIUrl":"10.1007/s11708-024-0971-3","url":null,"abstract":"<div><p>Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"33 - 58"},"PeriodicalIF":3.1,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of pressure on perovskite MSnX3 (M = Li, Na; X = Cl, Br, I): A density functional theory study","authors":"Shuhua Yuan, Mohib Ullah, Ammar M. Tighezza","doi":"10.1007/s11708-024-0970-4","DOIUrl":"10.1007/s11708-024-0970-4","url":null,"abstract":"<div><p>This study explores the structural, electronic, and optical properties of tin-based halide perovskites, <i>M</i>Sn<i>X</i><sub>3</sub> (<i>M</i> = Li, Na; <i>X</i> = Cl, Br, I), under varying pressure conditions. Using volume optimization and the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) method, it analyzes these perovskites in their cubic <i>Pm</i> <span>(Pm bar{3} m)</span> phase. The findings reveal that the lattice constants of these compounds decrease as pressure increases, with more pronounced changes observed when anions are substituted from Cl to I. The electronic analysis shows that these materials maintain their direct band gap nature under pressures, although the band gaps narrow with increasing pressure and larger anion sizes. Notably, Li/NaSnCl<sub>3</sub>, Li/NaSnBr<sub>3</sub>, and Li/NaSnI<sub>3</sub> may exhibit metallic behavior at pressures exceeding 5 GPa. Optical studies reveal significant pressure-induced enhancements in static dielectric constant and optical absorption, especially in the visible spectrum, highlighting the potential of these perovskites for solar cell applications. The refractive index increases with pressure, indicating a higher material density and enhanced optical performance. Additionally, the extinction coefficient and electron energy loss function provide insights into the energy absorption and scattering characteristics, which are crucial for improving the efficiency of optoelectronic devices. This comprehensive analysis underscores the potential of these tin-based halide perovskites for advanced optoelectronic and photovoltaic technologies.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"334 - 347"},"PeriodicalIF":6.2,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145171619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}