Three-dimensional numerical simulation of melting characteristics of phase change materials embedded with various TPMS skeletons

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Pengzhen Zhu, Baoming Chen, Liyan Sui, Hongchen Li, Kun Li, Yu Jian
{"title":"Three-dimensional numerical simulation of melting characteristics of phase change materials embedded with various TPMS skeletons","authors":"Pengzhen Zhu,&nbsp;Baoming Chen,&nbsp;Liyan Sui,&nbsp;Hongchen Li,&nbsp;Kun Li,&nbsp;Yu Jian","doi":"10.1007/s11708-024-0967-z","DOIUrl":null,"url":null,"abstract":"<div><p>Phase change energy storage technology has great potential for enhancing the efficient conversion and storage of energy. While triply periodic minimal surface (TPMS) structures have shown promise in improving heat transfer, research on their application in phase change heat transfer remains limited. This paper presents numerical simulations of composite phase change materials (PCMs) featuring TPMS skeletons, specifically gyroid, diamond, primitive, and I-graph and wrapped package-graph (I-WP) utilizing the lattice Boltzmann method (LBM). A comparative analysis of the effects of four TPMS skeletons on enhancing the phase change process reveals that the PCM containing the gyroid skeleton melts the fastest, with a complete melting time of 24.1% shorter than that of the PCM containing the I-WP skeleton. The PCM containing the gyroid skeleton is further simulated to explore the effects of the Rayleigh (<i>Ra</i>) number, Prandtl (<i>Pr</i>) number, and Stefan (<i>Ste</i>) number on the melting characteristics. Notably, the complete melting time is reduced by 60.44% when <i>Ra</i> is increased to 10<sup>6</sup> compared to the case with <i>Ra</i> at 10<sup>4</sup>. Increasing the <i>Pr</i> number accelerates the migration of the mushy zone, resulting in fast melting. Conversely, the convective heat transfer effect from the heating surface decreases as the <i>Ste</i> number increases. The temperature differences caused by the local thermal non-equilibrium (LTNE) effect over time are significant and complex, with peaks becoming more pronounced nearer the heating surface. This study intends to provide theoretical support for the further development of TPMS skeletons in enhancing the phase change process.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 2","pages":"157 - 174"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0967-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change energy storage technology has great potential for enhancing the efficient conversion and storage of energy. While triply periodic minimal surface (TPMS) structures have shown promise in improving heat transfer, research on their application in phase change heat transfer remains limited. This paper presents numerical simulations of composite phase change materials (PCMs) featuring TPMS skeletons, specifically gyroid, diamond, primitive, and I-graph and wrapped package-graph (I-WP) utilizing the lattice Boltzmann method (LBM). A comparative analysis of the effects of four TPMS skeletons on enhancing the phase change process reveals that the PCM containing the gyroid skeleton melts the fastest, with a complete melting time of 24.1% shorter than that of the PCM containing the I-WP skeleton. The PCM containing the gyroid skeleton is further simulated to explore the effects of the Rayleigh (Ra) number, Prandtl (Pr) number, and Stefan (Ste) number on the melting characteristics. Notably, the complete melting time is reduced by 60.44% when Ra is increased to 106 compared to the case with Ra at 104. Increasing the Pr number accelerates the migration of the mushy zone, resulting in fast melting. Conversely, the convective heat transfer effect from the heating surface decreases as the Ste number increases. The temperature differences caused by the local thermal non-equilibrium (LTNE) effect over time are significant and complex, with peaks becoming more pronounced nearer the heating surface. This study intends to provide theoretical support for the further development of TPMS skeletons in enhancing the phase change process.

嵌入不同TPMS骨架的相变材料熔化特性的三维数值模拟
相变储能技术在提高能量的高效转换和存储方面具有巨大的潜力。虽然三周期最小表面(TPMS)结构在改善传热方面显示出希望,但其在相变传热方面的应用研究仍然有限。本文利用晶格玻尔兹曼方法(LBM)对具有TPMS骨架的复合相变材料(PCMs)进行了数值模拟,特别是陀螺、金刚石、原始、i -图和包裹包图(I-WP)。对比分析了四种TPMS骨架对相变过程的促进作用,结果表明,含有旋转骨架的PCM熔化速度最快,完全熔化时间比含有I-WP骨架的PCM短24.1%。进一步模拟了含有回旋骨架的PCM,探讨了瑞利(Ra)数、普朗特(Pr)数和斯特凡(Ste)数对熔化特性的影响。当Ra值为106时,完全熔化时间比Ra值为104时缩短了60.44%。Pr值的增加加速了糊状区的迁移,导致了快速熔化。相反,受热面对流换热效果随着栅极数的增加而减小。局部热不平衡(LTNE)效应引起的温差随时间的变化是显著而复杂的,在靠近受热面的地方,其峰值变得更加明显。本研究旨在为进一步开发TPMS骨架增强相变过程提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信