{"title":"Progressive topology-curvature optimization of flow channel for PEMFC and performance assessment","authors":"Naixiao Wang, Youliang Cheng, Xiaochao Fan, Rui Ding, Honglian Zhou, Chaoshan Xin, Ruijing Shi","doi":"10.1007/s11708-025-0978-4","DOIUrl":null,"url":null,"abstract":"<div><p>The curved bending regions of serpentine flow channels play a crucial role in mass transfer and the overall performance of the flow field in proton exchange membrane fuel cells (PEMFCs). This paper proposes a “2D Topology-Curvature Optimization” progressive design method to optimize the bend area structures, aiming to enhance PEMFC performance. Through numerical simulations, it compares the topology-curvature optimization model with both the algorithm-based optimization model and a validation model, and analyzes the mass transfer, heat transfer characteristics, and output performance of PEMFC under different flow fields. The results indicate that the optimized structures improve convection and diffusion within the flow field, effectively enhancing the transport and distribution of oxygen and water within the PEMFC. Performance improvements, ranked from highest to lowest, are TS-III > MD-G (Model-GA) > MD-P (Model-PSO) > TS-II > TS-I. Among the optimized models, TS-III (Topology Structure-III) exhibits the greatest increases in peak current density and peak power density, with improvement of 4.72% and 3.12%, respectively. When considering the relationship between performance improvement and pressure drop using the efficiency evaluation criterion (EEC), TS-II demonstrates the best overall performance.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"395 - 412"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-0978-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The curved bending regions of serpentine flow channels play a crucial role in mass transfer and the overall performance of the flow field in proton exchange membrane fuel cells (PEMFCs). This paper proposes a “2D Topology-Curvature Optimization” progressive design method to optimize the bend area structures, aiming to enhance PEMFC performance. Through numerical simulations, it compares the topology-curvature optimization model with both the algorithm-based optimization model and a validation model, and analyzes the mass transfer, heat transfer characteristics, and output performance of PEMFC under different flow fields. The results indicate that the optimized structures improve convection and diffusion within the flow field, effectively enhancing the transport and distribution of oxygen and water within the PEMFC. Performance improvements, ranked from highest to lowest, are TS-III > MD-G (Model-GA) > MD-P (Model-PSO) > TS-II > TS-I. Among the optimized models, TS-III (Topology Structure-III) exhibits the greatest increases in peak current density and peak power density, with improvement of 4.72% and 3.12%, respectively. When considering the relationship between performance improvement and pressure drop using the efficiency evaluation criterion (EEC), TS-II demonstrates the best overall performance.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue