Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang
{"title":"单井中深层和深层地热系统的性能提升、经济分析和未来展望","authors":"Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang","doi":"10.1007/s11708-024-0971-3","DOIUrl":null,"url":null,"abstract":"<div><p>Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 1","pages":"33 - 58"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance enhancement, economic analysis, and futuristic insight of single-well medium-deep and deep geothermal systems\",\"authors\":\"Ang Li, R. S. Anand, Wenbo Huang, Juanwen Chen, Zhibin Li, Jian Guo, Qingshan Ma, Fangming Jiang\",\"doi\":\"10.1007/s11708-024-0971-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 1\",\"pages\":\"33 - 58\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0971-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0971-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance enhancement, economic analysis, and futuristic insight of single-well medium-deep and deep geothermal systems
Geothermal energy is clean and renewable, derived from the heat stored within accessible depths of the Earth’s crust. The adoption of a single-well system for medium-deep and deep geothermal energy extraction has attracted significant interest from the scientific and industrial communities because it effectively circumvents issues such as downhole inter-well connections and induced seismicity. However, the low heat transfer capacity in geothermal formations limits the heat extraction performance of single-well systems and hinders their commercial deployment. This review covers various enhancement concepts for optimizing the heat transfer within single-well systems, emphasizing critical parameters such as heat transfer area, heat transfer coefficient, and temperature difference. Additionally, it presents the thermo-economic evaluation of different configurations of single-well borehole heat exchangers and superlong gravity heat pipes (SLGHPs). The SLHGP, utilizing phase-change heat transfer, is recognized as a highly effective and continuously productive technology, capable of extracting over 1 MW of heat. Its pumpless operation and ease of installation in abandoned wells make it cost-effective, offering a promising economic advantage over traditional geothermal systems. It also highlights the challenges and potential research opportunities that can help identify gaps in research to enhance the performance of single-well geothermal systems.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue