基于气液相变和冷电热电联产的新型压缩CO2储能系统性能评价与优化

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Ding Wang, Jiahua Wu, Shizhen Liu, Dongbo Shi, Yonghui Xie
{"title":"基于气液相变和冷电热电联产的新型压缩CO2储能系统性能评价与优化","authors":"Ding Wang,&nbsp;Jiahua Wu,&nbsp;Shizhen Liu,&nbsp;Dongbo Shi,&nbsp;Yonghui Xie","doi":"10.1007/s11708-025-0973-9","DOIUrl":null,"url":null,"abstract":"<div><p>Compressed CO<sub>2</sub> energy storage (CCES) system has received widespread attention due to its superior performance. This paper proposes a novel CCES concept based on gas-liquid phase change and cold-electricity cogeneration. Thermodynamic and exergoeconomic analyses are performed under simulation conditions, followed by an investigation of the impacts of various decision parameters on the proposed system. Next, a multi-objective optimization is conducted with the total energy efficiency and total product unit cost as the objective functions. Finally, brief comparisons are made between the proposed system and existing systems. The results indicate that the total energy efficiency of the proposed system reaches 79.21% under the given simulation conditions, outperforming the electrical efficiency of 61.27%. Additionally, the total product unit cost of the system is 25.61 $/GJ. A key component, T1, plays an important role due to its large exergy destruction rate (1.0591 MW) and total investment cost rate (154.85 $/h). Despite this, the exergoeconomic factors of T1 is only 41.08%, indicating that investing in T1 to improve the efficiency is practicable. The analysis shows that a lower CO<sub>2</sub> condensation temperature benefits the proposed system performance. While improving the isentropic efficiencies of the compressors and turbines enhances total energy efficiency, excessive isentropic efficiencies can lead to a significant increase in total product unit cost. Through multi-objective optimization, an optimal favorable operating condition is identified, yielding a compromise result with a total energy efficiency of 111.91% and a total product unit cost of 28.35 $/GJ. The proposed CCES system efficiently delivers both power and cooling energy, demonstrating clear superiorities over previous systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 2","pages":"205 - 226"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation and optimization of a novel compressed CO2 energy storage system based on gas-liquid phase change and cold-electricity cogeneration\",\"authors\":\"Ding Wang,&nbsp;Jiahua Wu,&nbsp;Shizhen Liu,&nbsp;Dongbo Shi,&nbsp;Yonghui Xie\",\"doi\":\"10.1007/s11708-025-0973-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compressed CO<sub>2</sub> energy storage (CCES) system has received widespread attention due to its superior performance. This paper proposes a novel CCES concept based on gas-liquid phase change and cold-electricity cogeneration. Thermodynamic and exergoeconomic analyses are performed under simulation conditions, followed by an investigation of the impacts of various decision parameters on the proposed system. Next, a multi-objective optimization is conducted with the total energy efficiency and total product unit cost as the objective functions. Finally, brief comparisons are made between the proposed system and existing systems. The results indicate that the total energy efficiency of the proposed system reaches 79.21% under the given simulation conditions, outperforming the electrical efficiency of 61.27%. Additionally, the total product unit cost of the system is 25.61 $/GJ. A key component, T1, plays an important role due to its large exergy destruction rate (1.0591 MW) and total investment cost rate (154.85 $/h). Despite this, the exergoeconomic factors of T1 is only 41.08%, indicating that investing in T1 to improve the efficiency is practicable. The analysis shows that a lower CO<sub>2</sub> condensation temperature benefits the proposed system performance. While improving the isentropic efficiencies of the compressors and turbines enhances total energy efficiency, excessive isentropic efficiencies can lead to a significant increase in total product unit cost. Through multi-objective optimization, an optimal favorable operating condition is identified, yielding a compromise result with a total energy efficiency of 111.91% and a total product unit cost of 28.35 $/GJ. The proposed CCES system efficiently delivers both power and cooling energy, demonstrating clear superiorities over previous systems.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 2\",\"pages\":\"205 - 226\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-0973-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-0973-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

压缩CO2储能系统以其优越的性能得到了广泛的关注。本文提出了一种基于气液相变和冷电热电联产的新型CCES概念。在模拟条件下进行了热力学和功耗经济分析,然后研究了各种决策参数对所提出系统的影响。其次,以总能源效率和总产品单位成本为目标函数进行多目标优化。最后,对本文提出的系统与现有系统进行了简要的比较。结果表明,在给定的仿真条件下,系统的总能效达到79.21%,优于61.27%的电效率。此外,该系统的总产品单位成本为25.61美元/GJ。其中关键部件T1因其较大的火用破坏率(1.0591 MW)和总投资成本(154.85美元/小时)而发挥着重要作用。尽管如此,T1的努力经济因子仅为41.08%,说明投资T1提高效率是可行的。分析表明,较低的CO2冷凝温度有利于系统性能的提高。虽然提高压气机和涡轮机的等熵效率可以提高总能源效率,但过高的等熵效率会导致产品总单位成本的显著增加。通过多目标优化,确定了一个最优的有利运行工况,得到了总能源效率为111.91%,产品总单位成本为28.35美元/GJ的折衷结果。所提出的CCES系统有效地提供电力和冷却能量,比以前的系统显示出明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation and optimization of a novel compressed CO2 energy storage system based on gas-liquid phase change and cold-electricity cogeneration

Compressed CO2 energy storage (CCES) system has received widespread attention due to its superior performance. This paper proposes a novel CCES concept based on gas-liquid phase change and cold-electricity cogeneration. Thermodynamic and exergoeconomic analyses are performed under simulation conditions, followed by an investigation of the impacts of various decision parameters on the proposed system. Next, a multi-objective optimization is conducted with the total energy efficiency and total product unit cost as the objective functions. Finally, brief comparisons are made between the proposed system and existing systems. The results indicate that the total energy efficiency of the proposed system reaches 79.21% under the given simulation conditions, outperforming the electrical efficiency of 61.27%. Additionally, the total product unit cost of the system is 25.61 $/GJ. A key component, T1, plays an important role due to its large exergy destruction rate (1.0591 MW) and total investment cost rate (154.85 $/h). Despite this, the exergoeconomic factors of T1 is only 41.08%, indicating that investing in T1 to improve the efficiency is practicable. The analysis shows that a lower CO2 condensation temperature benefits the proposed system performance. While improving the isentropic efficiencies of the compressors and turbines enhances total energy efficiency, excessive isentropic efficiencies can lead to a significant increase in total product unit cost. Through multi-objective optimization, an optimal favorable operating condition is identified, yielding a compromise result with a total energy efficiency of 111.91% and a total product unit cost of 28.35 $/GJ. The proposed CCES system efficiently delivers both power and cooling energy, demonstrating clear superiorities over previous systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信