Highly efficient operation of an innovative SOFC powered all-electric ship system using quick approach for ammonia to hydrogen

IF 6.2 4区 工程技术 Q3 ENERGY & FUELS
Xiaojing Lv, Peiran Hong, Jiale Wen, Yi Ma, Catalina Spataru, Yiwu Weng
{"title":"Highly efficient operation of an innovative SOFC powered all-electric ship system using quick approach for ammonia to hydrogen","authors":"Xiaojing Lv,&nbsp;Peiran Hong,&nbsp;Jiale Wen,&nbsp;Yi Ma,&nbsp;Catalina Spataru,&nbsp;Yiwu Weng","doi":"10.1007/s11708-025-0974-8","DOIUrl":null,"url":null,"abstract":"<div><p>The solid oxide fuel cell (SOFC) power system fueled by NH<sub>3</sub> is considered one of the most promising solutions for achieving ship decarbonization and carbon neutrality. This paper addresses the technical challenges faced by NH<sub>3</sub> fuel SOFC ship power system, including slow hydrogen (H<sub>2</sub>) production, low efficiency, and limited space. It introduces an innovative a NH<sub>3</sub>-integrated reactor for rapid H<sub>2</sub> production, establishes a safe and efficient all-electric SOFC all-electric propulsion system adaptable to various sailing conditions. The system is validated using a 2 kW prototype experimental rig. Results show that the SOFC system, designed for a target ship, has a rated power of 96 kW and an electrical efficiency of 60.13%, meeting the requirements for rated cruising conditions. Under identical catalytic scenarios, the designed reactor, with highly efficient heat transfer, measuring 1.1 m in length, can achieve complete NH<sub>3</sub> decomposition within 2.94 s, representing a 35% reduction in cracking time and a 42% decrease in required cabin space. During high-load voyage conditions, adjusting the circulation ratio (CR) and ammonia-oxygen ratio (A/O) improves system efficiency across a wide operational range. Among these adjustments, altering the A/O ratio proves to be the most efficient strategy. Under this configuration, the system achieves an efficiency of 55.02% at low load and 61.73% at high load, allowing operation across a power range of 20% to 110%. Experimental results indicate that the error for NH<sub>3</sub> cracking H<sub>2</sub> is less than 3% within the range of 570–700 °C, which is relevant to typical ship operation scenarios. At 656 °C, the NH<sub>3</sub> cracking H<sub>2</sub> rate reaches 100%. Under these conditions, the SOFC produces 2.045 kW of power with an efficiency of approximately 58.66%. The noise level detected is 58.6 dB, while the concentrations of CO<sub>2</sub>, NO, and SO<sub>2</sub> in the flue gas approach zero. These findings support the transition of the shipping industry to green, clean systems, contributing significantly to future reductions in ocean carbon emissions.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"365 - 381"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-0974-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The solid oxide fuel cell (SOFC) power system fueled by NH3 is considered one of the most promising solutions for achieving ship decarbonization and carbon neutrality. This paper addresses the technical challenges faced by NH3 fuel SOFC ship power system, including slow hydrogen (H2) production, low efficiency, and limited space. It introduces an innovative a NH3-integrated reactor for rapid H2 production, establishes a safe and efficient all-electric SOFC all-electric propulsion system adaptable to various sailing conditions. The system is validated using a 2 kW prototype experimental rig. Results show that the SOFC system, designed for a target ship, has a rated power of 96 kW and an electrical efficiency of 60.13%, meeting the requirements for rated cruising conditions. Under identical catalytic scenarios, the designed reactor, with highly efficient heat transfer, measuring 1.1 m in length, can achieve complete NH3 decomposition within 2.94 s, representing a 35% reduction in cracking time and a 42% decrease in required cabin space. During high-load voyage conditions, adjusting the circulation ratio (CR) and ammonia-oxygen ratio (A/O) improves system efficiency across a wide operational range. Among these adjustments, altering the A/O ratio proves to be the most efficient strategy. Under this configuration, the system achieves an efficiency of 55.02% at low load and 61.73% at high load, allowing operation across a power range of 20% to 110%. Experimental results indicate that the error for NH3 cracking H2 is less than 3% within the range of 570–700 °C, which is relevant to typical ship operation scenarios. At 656 °C, the NH3 cracking H2 rate reaches 100%. Under these conditions, the SOFC produces 2.045 kW of power with an efficiency of approximately 58.66%. The noise level detected is 58.6 dB, while the concentrations of CO2, NO, and SO2 in the flue gas approach zero. These findings support the transition of the shipping industry to green, clean systems, contributing significantly to future reductions in ocean carbon emissions.

采用快速氨制氢方法的创新SOFC动力全电动船舶系统的高效运行
以NH3为燃料的固体氧化物燃料电池(SOFC)动力系统被认为是实现船舶脱碳和碳中和的最有前途的解决方案之一。本文针对NH3燃料SOFC船舶动力系统所面临的产氢慢、效率低、空间有限等技术难题进行了研究。它引入了一种创新的nh3集成反应器,用于快速制氢,建立了一种安全高效的全电动SOFC全电力推进系统,可适应各种航行条件。该系统在一台2kw的原型实验台上进行了验证。结果表明,该SOFC系统的额定功率为96 kW,电效率为60.13%,满足目标船额定巡航条件的要求。在相同的催化条件下,设计的反应器长1.1 m,传热效率高,可在2.94 s内完成NH3的完全分解,裂解时间缩短35%,所需舱室空间减少42%。在高负荷航行条件下,调节循环比(CR)和氨氧比(A/O)可以在大范围内提高系统效率。在这些调整中,改变A/O比率是最有效的策略。在这种配置下,系统在低负载下的效率为55.02%,在高负载下的效率为61.73%,允许在20%至110%的功率范围内运行。实验结果表明,在570 ~ 700℃范围内,NH3裂解H2的误差小于3%,与船舶典型工况相关。656℃时,NH3裂解H2率达到100%。在这些条件下,SOFC产生2.045 kW的功率,效率约为58.66%。检测到的噪声水平为58.6 dB,而烟气中CO2、NO和SO2的浓度接近于零。这些发现支持航运业向绿色、清洁系统的转变,对未来减少海洋碳排放做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信