Indagationes Mathematicae-New Series最新文献

筛选
英文 中文
Classification of tight contact structures on some Seifert fibered manifolds 塞费特纤维歧管紧密接触结构的分类
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-04-11 DOI: 10.1016/j.indag.2025.03.011
Tanushree Shah
{"title":"Classification of tight contact structures on some Seifert fibered manifolds","authors":"Tanushree Shah","doi":"10.1016/j.indag.2025.03.011","DOIUrl":"10.1016/j.indag.2025.03.011","url":null,"abstract":"<div><div>We classify tight contact structures with zero Giroux torsion on some Seifert-fibered manifolds with four exceptional fibers. We get the lower bound by constructing contact structures using Legendrian surgery. We use convex surface theory to obtain the upper bound.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1288-1309"},"PeriodicalIF":0.8,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the distribution of clusters and deserts of prime numbers 关于素数簇和沙漠分布的注释
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-04-01 DOI: 10.1016/j.indag.2025.03.007
Eugenio P. Balanzario
{"title":"A note on the distribution of clusters and deserts of prime numbers","authors":"Eugenio P. Balanzario","doi":"10.1016/j.indag.2025.03.007","DOIUrl":"10.1016/j.indag.2025.03.007","url":null,"abstract":"<div><div>We consider the distribution of values of weighted sums of the von Mangoldt arithmetical function. Using a formula for the distribution of values of trigonometric polynomials, we are able to present evidence supporting the claim that these weighted sums follow a distribution with a normal-like behavior.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1276-1287"},"PeriodicalIF":0.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditions for the difference set of a central Cantor set to be a Cantorval. Part II 中心康托集的差集是康托瓦尔的条件。第二部分
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-03-26 DOI: 10.1016/j.indag.2025.03.005
Piotr Nowakowski
{"title":"Conditions for the difference set of a central Cantor set to be a Cantorval. Part II","authors":"Piotr Nowakowski","doi":"10.1016/j.indag.2025.03.005","DOIUrl":"10.1016/j.indag.2025.03.005","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>⊂</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> be the central Cantor set generated by a sequence <span><math><mrow><mi>a</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. It is known that the difference set <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> has one of three possible forms: a finite union of closed intervals, a Cantor set, or a Cantorval. In the previous paper (Filipczak and Nowakowski, 2023), there was given the sufficient condition for the sequence <span><math><mi>a</mi></math></span>, which implies that <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> is a Cantorval. In this paper we give different conditions for a sequence <span><math><mi>a</mi></math></span>, which guarantee the same assertion. We also prove a corollary, which provides infinitely many new examples of Cantorvals.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1223-1244"},"PeriodicalIF":0.8,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-self-intersective Dragon curves 非自相交的龙曲线
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-03-24 DOI: 10.1016/j.indag.2025.03.006
Shigeki Akiyama , Yuichi Kamiya , Fan Wen
{"title":"Non-self-intersective Dragon curves","authors":"Shigeki Akiyama ,&nbsp;Yuichi Kamiya ,&nbsp;Fan Wen","doi":"10.1016/j.indag.2025.03.006","DOIUrl":"10.1016/j.indag.2025.03.006","url":null,"abstract":"<div><div>Let us fold a strip of paper many times in the same direction, and then unfold it to form a fixed angle <span><math><mi>θ</mi></math></span> at all creases. The resulting shape is called the Dragon curve with the unfolding angle <span><math><mi>θ</mi></math></span>. When <span><math><mrow><mn>0</mn><mo>≤</mo><mi>θ</mi><mo>&lt;</mo><mn>90</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve has a self-intersection. When <span><math><mrow><mi>θ</mi><mo>=</mo><mn>180</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve is a straight line, which has no self-intersection. In this paper, we will show that any Dragon curve whose unfolding angle is greater than <span><math><mrow><mn>99</mn><mo>.</mo><mn>3438</mn><mo>°</mo></mrow></math></span> and less than <span><math><mrow><mn>180</mn><mo>°</mo></mrow></math></span> has no self-intersection.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1245-1275"},"PeriodicalIF":0.8,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144895927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On arithmetically defined hyperbolic 5-manifolds arising from maximal orders in definite Q-algebras 定q代数中由极大阶产生的算术定义双曲5流形
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-03-13 DOI: 10.1016/j.indag.2025.03.001
Joachim Schwermer
{"title":"On arithmetically defined hyperbolic 5-manifolds arising from maximal orders in definite Q-algebras","authors":"Joachim Schwermer","doi":"10.1016/j.indag.2025.03.001","DOIUrl":"10.1016/j.indag.2025.03.001","url":null,"abstract":"<div><div>Using the quaternionic formalism for the description of the group of isometries of hyperbolic 5-space we consider arithmetically defined 5-dimensional hyperbolic manifolds which are non-compact but of finite volume. They arise from maximal orders <span><math><mi>Λ</mi></math></span> in the central simple algebra <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> of degree 4 where <span><math><mi>D</mi></math></span> denotes a definite quaternion <span><math><mi>Q</mi></math></span>-algebra. The affine <span><math><mi>Z</mi></math></span>-group scheme <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub></mrow></math></span> determines an integral structure for the algebraic <span><math><mi>Q</mi></math></span>-group <span><math><mrow><mi>G</mi><mo>=</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub><msub><mrow><mo>×</mo></mrow><mrow><mi>Z</mi></mrow></msub><mi>Q</mi></mrow></math></span> obtained by base change. The group <span><math><mi>G</mi></math></span> is an inner form of the special linear <span><math><mi>Q</mi></math></span>-group <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Each torsion-free subgroup <span><math><mrow><mi>Γ</mi><mo>⊂</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> determines a hyperbolic 5-manifold, to be denoted <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>/</mo><mi>Γ</mi></mrow></math></span>. Given a principal congruence subgroup <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, we determine the number of ends and the dimensions of the cohomology groups at infinity of the manifold <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>/</mo><mi>Γ</mi><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1205-1222"},"PeriodicalIF":0.8,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degrees of join-distributivity via Bruns–Lakser towers 通过Bruns-Lakser塔的联合分配度
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-03-11 DOI: 10.1016/j.indag.2025.02.005
G. Bezhanishvili , F. Dashiell Jr. , M.A. Moshier , J. Walters-Wayland
{"title":"Degrees of join-distributivity via Bruns–Lakser towers","authors":"G. Bezhanishvili ,&nbsp;F. Dashiell Jr. ,&nbsp;M.A. Moshier ,&nbsp;J. Walters-Wayland","doi":"10.1016/j.indag.2025.02.005","DOIUrl":"10.1016/j.indag.2025.02.005","url":null,"abstract":"<div><div>We utilize the Bruns–Lakser completion to introduce Bruns–Lakser towers of a meet-semilattice. This machinery enables us to develop various hierarchies inside the class of bounded distributive lattices, which measure <span><math><mi>κ</mi></math></span>-degrees of distributivity of bounded distributive lattices and their Dedekind–MacNeille completions. We also use Priestley duality to obtain a dual characterization of the resulting hierarchies. Among other things, this yields a natural generalization of Esakia’s representation of Heyting lattices to proHeyting lattices.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1180-1204"},"PeriodicalIF":0.8,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary quadratic forms with the same value set 具有相同值集的二元二次型
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-02-07 DOI: 10.1016/j.indag.2025.01.005
Étienne Fouvry , Peter Koymans
{"title":"Binary quadratic forms with the same value set","authors":"Étienne Fouvry ,&nbsp;Peter Koymans","doi":"10.1016/j.indag.2025.01.005","DOIUrl":"10.1016/j.indag.2025.01.005","url":null,"abstract":"<div><div>Given a binary quadratic form <span><math><mrow><mi>F</mi><mo>∈</mo><mi>Z</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span>, we define its value set <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> to be <span><math><mrow><mo>{</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>:</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>}</mo></mrow></math></span>. If <span><math><mrow><mi>F</mi><mo>,</mo><mi>G</mi><mo>∈</mo><mi>Z</mi><mrow><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></mrow></mrow></math></span> are two binary quadratic forms, we give necessary and sufficient conditions on <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> for <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1157-1179"},"PeriodicalIF":0.8,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On moments of the error term of the multivariable kth divisor functions 多变量第k因子函数误差项的矩
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-01-30 DOI: 10.1016/j.indag.2025.01.003
Zhen Guo, Xin Li
{"title":"On moments of the error term of the multivariable kth divisor functions","authors":"Zhen Guo,&nbsp;Xin Li","doi":"10.1016/j.indag.2025.01.003","DOIUrl":"10.1016/j.indag.2025.01.003","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Suppose &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is an integer. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the number of ways &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; can be written as a product of &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; fixed factors. For any fixed integer &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we have the asymptotic formula &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⩽&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;munderover&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/munderover&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;log&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are computable constants. In this paper we study the mean square of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and give upper bounds for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and an asymptotic formula for the mean square of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We also get an upper bound for the third power moment of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, we study the first power moment of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and then give a result for the sign ","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1133-1156"},"PeriodicalIF":0.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z 半直接积Zn - Z的benjami - nekrashevych - pete猜想的初等证明
IF 0.8 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-01-23 DOI: 10.1016/j.indag.2025.01.002
Dean Wardell
{"title":"An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z","authors":"Dean Wardell","doi":"10.1016/j.indag.2025.01.002","DOIUrl":"10.1016/j.indag.2025.01.002","url":null,"abstract":"<div><div>A finitely generated group <span><math><mi>G</mi></math></span> is called strongly scale-invariant if there exists an injective homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a finite index subgroup of <span><math><mi>G</mi></math></span> and such that <span><math><mrow><msub><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.</div><div>This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⋊</mo><mi>Z</mi></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1125-1132"},"PeriodicalIF":0.8,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144896425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive spectrum preserving mappings fromvon Neumann algebras 冯诺依曼代数的加性保谱映射
IF 0.5 4区 数学
Indagationes Mathematicae-New Series Pub Date : 2025-01-03 DOI: 10.1016/j.indag.2024.12.005
Martin Mathieu , Francois Schulz
{"title":"Additive spectrum preserving mappings fromvon Neumann algebras","authors":"Martin Mathieu ,&nbsp;Francois Schulz","doi":"10.1016/j.indag.2024.12.005","DOIUrl":"10.1016/j.indag.2024.12.005","url":null,"abstract":"<div><div>We establish Jafarian’s 2009 conjecture that every additive spectrum preserving mapping from a von Neumann algebra onto a semisimple Banach algebra is a Jordan isomorphism.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 4","pages":"Pages 1112-1123"},"PeriodicalIF":0.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信