Conditions for the difference set of a central Cantor set to be a Cantorval. Part II

IF 0.8 4区 数学 Q3 MATHEMATICS
Piotr Nowakowski
{"title":"Conditions for the difference set of a central Cantor set to be a Cantorval. Part II","authors":"Piotr Nowakowski","doi":"10.1016/j.indag.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>⊂</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> be the central Cantor set generated by a sequence <span><math><mrow><mi>a</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. It is known that the difference set <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> has one of three possible forms: a finite union of closed intervals, a Cantor set, or a Cantorval. In the previous paper (Filipczak and Nowakowski, 2023), there was given the sufficient condition for the sequence <span><math><mi>a</mi></math></span>, which implies that <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow><mo>−</mo><mi>C</mi><mrow><mo>(</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span> is a Cantorval. In this paper we give different conditions for a sequence <span><math><mi>a</mi></math></span>, which guarantee the same assertion. We also prove a corollary, which provides infinitely many new examples of Cantorvals.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1223-1244"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000254","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let C(a)[0,1] be the central Cantor set generated by a sequence a=(an)0,1N. It is known that the difference set C(a)C(a) has one of three possible forms: a finite union of closed intervals, a Cantor set, or a Cantorval. In the previous paper (Filipczak and Nowakowski, 2023), there was given the sufficient condition for the sequence a, which implies that C(a)C(a) is a Cantorval. In this paper we give different conditions for a sequence a, which guarantee the same assertion. We also prove a corollary, which provides infinitely many new examples of Cantorvals.
中心康托集的差集是康托瓦尔的条件。第二部分
设C(a)∧[0,1]是由序列a=(an)∈0,1n生成的中心康托集。已知差分集C(a)−C(a)具有三种可能的形式之一:闭区间的有限并、Cantor集或Cantorval集。在之前的论文(Filipczak and Nowakowski, 2023)中,给出了序列a的充分条件,这意味着C(a)−C(a)是Cantorval。本文给出了序列a的不同条件,以保证同一断言。我们还证明了一个推论,该推论提供了无限多的Cantorvals的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信