{"title":"半直接积Zn - Z的benjami - nekrashevych - pete猜想的初等证明","authors":"Dean Wardell","doi":"10.1016/j.indag.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>A finitely generated group <span><math><mi>G</mi></math></span> is called strongly scale-invariant if there exists an injective homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a finite index subgroup of <span><math><mi>G</mi></math></span> and such that <span><math><mrow><msub><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.</div><div>This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⋊</mo><mi>Z</mi></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1125-1132"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z\",\"authors\":\"Dean Wardell\",\"doi\":\"10.1016/j.indag.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A finitely generated group <span><math><mi>G</mi></math></span> is called strongly scale-invariant if there exists an injective homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a finite index subgroup of <span><math><mi>G</mi></math></span> and such that <span><math><mrow><msub><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.</div><div>This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⋊</mo><mi>Z</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1125-1132\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z
A finitely generated group is called strongly scale-invariant if there exists an injective homomorphism such that is a finite index subgroup of and such that is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.
This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.