半直接积Zn - Z的benjami - nekrashevych - pete猜想的初等证明

IF 0.8 4区 数学 Q3 MATHEMATICS
Dean Wardell
{"title":"半直接积Zn - Z的benjami - nekrashevych - pete猜想的初等证明","authors":"Dean Wardell","doi":"10.1016/j.indag.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>A finitely generated group <span><math><mi>G</mi></math></span> is called strongly scale-invariant if there exists an injective homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a finite index subgroup of <span><math><mi>G</mi></math></span> and such that <span><math><mrow><msub><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.</div><div>This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⋊</mo><mi>Z</mi></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1125-1132"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z\",\"authors\":\"Dean Wardell\",\"doi\":\"10.1016/j.indag.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A finitely generated group <span><math><mi>G</mi></math></span> is called strongly scale-invariant if there exists an injective homomorphism <span><math><mrow><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a finite index subgroup of <span><math><mi>G</mi></math></span> and such that <span><math><mrow><msub><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.</div><div>This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product <span><math><mrow><msup><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⋊</mo><mi>Z</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1125-1132\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个单射同态f:G→G,使得f(G)是G的有限索引子群,且∩n≥0fn(G)是有限的,则有限生成群G称为强尺度不变群。Nekrashevych和Pete在反驳Benjamini的一个更强的猜想后,推测所有强尺度不变群实际上都是幂零的。这个猜想在某些情况下是正确的。der证明了它实际上是多环基团。本文给出了一类多环群可以写成半直接积Zn - Z的初等证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elementary proof of the Benjamini–Nekrashevych–Pete conjecture for the semi-direct products Zn⋊Z
A finitely generated group G is called strongly scale-invariant if there exists an injective homomorphism f:GG such that f(G) is a finite index subgroup of G and such that n0fn(G) is finite. Nekrashevych and Pete conjectured that all strongly scale-invariant groups are virtually nilpotent, after disproving a stronger conjecture by Benjamini.
This conjecture is known to be true in some situations. Deré proved it for virtually polycyclic groups. In this paper, we provide an elementary proof for those polycyclic groups that can be written as a semi-direct product ZnZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信