{"title":"多变量第k因子函数误差项的矩","authors":"Zhen Guo, Xin Li","doi":"10.1016/j.indag.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>3</mn></mrow></math></span> is an integer. Let <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of ways <span><math><mi>n</mi></math></span> can be written as a product of <span><math><mi>k</mi></math></span> fixed factors. For any fixed integer <span><math><mrow><mi>r</mi><mo>⩾</mo><mn>2</mn></mrow></math></span>, we have the asymptotic formula <span><span><span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mspace></mspace><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⩽</mo><mi>x</mi></mrow></munder><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><munderover><mrow><mo>∑</mo></mrow><mrow><mi>ℓ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></munderover><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span> are computable constants. In this paper we study the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and give upper bounds for <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>4</mn></mrow></math></span> and an asymptotic formula for the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. We also get an upper bound for the third power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we study the first power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and then give a result for the sign changes of it.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1133-1156"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On moments of the error term of the multivariable kth divisor functions\",\"authors\":\"Zhen Guo, Xin Li\",\"doi\":\"10.1016/j.indag.2025.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>3</mn></mrow></math></span> is an integer. Let <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of ways <span><math><mi>n</mi></math></span> can be written as a product of <span><math><mi>k</mi></math></span> fixed factors. For any fixed integer <span><math><mrow><mi>r</mi><mo>⩾</mo><mn>2</mn></mrow></math></span>, we have the asymptotic formula <span><span><span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mspace></mspace><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⩽</mo><mi>x</mi></mrow></munder><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><munderover><mrow><mo>∑</mo></mrow><mrow><mi>ℓ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></munderover><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span> are computable constants. In this paper we study the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and give upper bounds for <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>4</mn></mrow></math></span> and an asymptotic formula for the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. We also get an upper bound for the third power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we study the first power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and then give a result for the sign changes of it.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1133-1156\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设k大于或等于3是一个整数。设τk(n)是n可以写成k个固定因子的乘积的方法个数。对于任何固定整数r大于或等于2,我们有渐近公式∑n1,⋯nr≤xτk(n1⋯nr)=xr∑r =0r(k−1)dr,k, r(logx) r +O(xr−1+αk+ æ),其中dr,k, r和0<;αk<;1是可计算常数。在本文中,我们研究Δr,k(x)的均方并给出k小于或等于4的上限和Δr,3(x)的均方的渐近公式。我们也得到了Δr 3(x)的三次幂矩的上界。此外,我们还研究了Δr,3(x)的一阶幂矩,并给出了它的符号变化的结果。
On moments of the error term of the multivariable kth divisor functions
Suppose is an integer. Let be the number of ways can be written as a product of fixed factors. For any fixed integer , we have the asymptotic formula where and are computable constants. In this paper we study the mean square of and give upper bounds for and an asymptotic formula for the mean square of . We also get an upper bound for the third power moment of . Moreover, we study the first power moment of and then give a result for the sign changes of it.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.