非自相交的龙曲线

IF 0.8 4区 数学 Q3 MATHEMATICS
Shigeki Akiyama , Yuichi Kamiya , Fan Wen
{"title":"非自相交的龙曲线","authors":"Shigeki Akiyama ,&nbsp;Yuichi Kamiya ,&nbsp;Fan Wen","doi":"10.1016/j.indag.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Let us fold a strip of paper many times in the same direction, and then unfold it to form a fixed angle <span><math><mi>θ</mi></math></span> at all creases. The resulting shape is called the Dragon curve with the unfolding angle <span><math><mi>θ</mi></math></span>. When <span><math><mrow><mn>0</mn><mo>≤</mo><mi>θ</mi><mo>&lt;</mo><mn>90</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve has a self-intersection. When <span><math><mrow><mi>θ</mi><mo>=</mo><mn>180</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve is a straight line, which has no self-intersection. In this paper, we will show that any Dragon curve whose unfolding angle is greater than <span><math><mrow><mn>99</mn><mo>.</mo><mn>3438</mn><mo>°</mo></mrow></math></span> and less than <span><math><mrow><mn>180</mn><mo>°</mo></mrow></math></span> has no self-intersection.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1245-1275"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-self-intersective Dragon curves\",\"authors\":\"Shigeki Akiyama ,&nbsp;Yuichi Kamiya ,&nbsp;Fan Wen\",\"doi\":\"10.1016/j.indag.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let us fold a strip of paper many times in the same direction, and then unfold it to form a fixed angle <span><math><mi>θ</mi></math></span> at all creases. The resulting shape is called the Dragon curve with the unfolding angle <span><math><mi>θ</mi></math></span>. When <span><math><mrow><mn>0</mn><mo>≤</mo><mi>θ</mi><mo>&lt;</mo><mn>90</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve has a self-intersection. When <span><math><mrow><mi>θ</mi><mo>=</mo><mn>180</mn><mo>°</mo></mrow></math></span>, the corresponding Dragon curve is a straight line, which has no self-intersection. In this paper, we will show that any Dragon curve whose unfolding angle is greater than <span><math><mrow><mn>99</mn><mo>.</mo><mn>3438</mn><mo>°</mo></mrow></math></span> and less than <span><math><mrow><mn>180</mn><mo>°</mo></mrow></math></span> has no self-intersection.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 5\",\"pages\":\"Pages 1245-1275\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357725000242\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000242","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让我们将一张纸沿同一方向折叠多次,然后将其展开,在所有折痕处形成一个固定的角度θ。得到的形状称为展开角为θ的龙曲线。当0≤θ<;90°时,对应的龙曲线有自交。当θ=180°时,对应的龙曲线为直线,没有自交。在本文中,我们将证明任何展开角大于99.3438°且小于180°的Dragon曲线都不存在自交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-self-intersective Dragon curves
Let us fold a strip of paper many times in the same direction, and then unfold it to form a fixed angle θ at all creases. The resulting shape is called the Dragon curve with the unfolding angle θ. When 0θ<90°, the corresponding Dragon curve has a self-intersection. When θ=180°, the corresponding Dragon curve is a straight line, which has no self-intersection. In this paper, we will show that any Dragon curve whose unfolding angle is greater than 99.3438° and less than 180° has no self-intersection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信