{"title":"On arithmetically defined hyperbolic 5-manifolds arising from maximal orders in definite Q-algebras","authors":"Joachim Schwermer","doi":"10.1016/j.indag.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Using the quaternionic formalism for the description of the group of isometries of hyperbolic 5-space we consider arithmetically defined 5-dimensional hyperbolic manifolds which are non-compact but of finite volume. They arise from maximal orders <span><math><mi>Λ</mi></math></span> in the central simple algebra <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> of degree 4 where <span><math><mi>D</mi></math></span> denotes a definite quaternion <span><math><mi>Q</mi></math></span>-algebra. The affine <span><math><mi>Z</mi></math></span>-group scheme <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub></mrow></math></span> determines an integral structure for the algebraic <span><math><mi>Q</mi></math></span>-group <span><math><mrow><mi>G</mi><mo>=</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub><msub><mrow><mo>×</mo></mrow><mrow><mi>Z</mi></mrow></msub><mi>Q</mi></mrow></math></span> obtained by base change. The group <span><math><mi>G</mi></math></span> is an inner form of the special linear <span><math><mi>Q</mi></math></span>-group <span><math><mrow><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></math></span>. Each torsion-free subgroup <span><math><mrow><mi>Γ</mi><mo>⊂</mo><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mrow><mo>(</mo><mi>Z</mi><mo>)</mo></mrow></mrow></math></span> determines a hyperbolic 5-manifold, to be denoted <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>/</mo><mi>Γ</mi></mrow></math></span>. Given a principal congruence subgroup <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, we determine the number of ends and the dimensions of the cohomology groups at infinity of the manifold <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>/</mo><mi>Γ</mi><mrow><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1205-1222"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000205","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the quaternionic formalism for the description of the group of isometries of hyperbolic 5-space we consider arithmetically defined 5-dimensional hyperbolic manifolds which are non-compact but of finite volume. They arise from maximal orders in the central simple algebra of degree 4 where denotes a definite quaternion -algebra. The affine -group scheme determines an integral structure for the algebraic -group obtained by base change. The group is an inner form of the special linear -group . Each torsion-free subgroup determines a hyperbolic 5-manifold, to be denoted . Given a principal congruence subgroup , we determine the number of ends and the dimensions of the cohomology groups at infinity of the manifold .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.