{"title":"On moments of the error term of the multivariable kth divisor functions","authors":"Zhen Guo, Xin Li","doi":"10.1016/j.indag.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>3</mn></mrow></math></span> is an integer. Let <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> be the number of ways <span><math><mi>n</mi></math></span> can be written as a product of <span><math><mi>k</mi></math></span> fixed factors. For any fixed integer <span><math><mrow><mi>r</mi><mo>⩾</mo><mn>2</mn></mrow></math></span>, we have the asymptotic formula <span><span><span><math><mrow><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mspace></mspace><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⩽</mo><mi>x</mi></mrow></munder><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><munderover><mrow><mo>∑</mo></mrow><mrow><mi>ℓ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></munderover><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>+</mo><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>+</mo><mi>ɛ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo><</mo><mn>1</mn></mrow></math></span> are computable constants. In this paper we study the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and give upper bounds for <span><math><mrow><mi>k</mi><mo>⩾</mo><mn>4</mn></mrow></math></span> and an asymptotic formula for the mean square of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. We also get an upper bound for the third power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, we study the first power moment of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>,</mo><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and then give a result for the sign changes of it.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1133-1156"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose is an integer. Let be the number of ways can be written as a product of fixed factors. For any fixed integer , we have the asymptotic formula where and are computable constants. In this paper we study the mean square of and give upper bounds for and an asymptotic formula for the mean square of . We also get an upper bound for the third power moment of . Moreover, we study the first power moment of and then give a result for the sign changes of it.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.