Degrees of join-distributivity via Bruns–Lakser towers

IF 0.8 4区 数学 Q3 MATHEMATICS
G. Bezhanishvili , F. Dashiell Jr. , M.A. Moshier , J. Walters-Wayland
{"title":"Degrees of join-distributivity via Bruns–Lakser towers","authors":"G. Bezhanishvili ,&nbsp;F. Dashiell Jr. ,&nbsp;M.A. Moshier ,&nbsp;J. Walters-Wayland","doi":"10.1016/j.indag.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>We utilize the Bruns–Lakser completion to introduce Bruns–Lakser towers of a meet-semilattice. This machinery enables us to develop various hierarchies inside the class of bounded distributive lattices, which measure <span><math><mi>κ</mi></math></span>-degrees of distributivity of bounded distributive lattices and their Dedekind–MacNeille completions. We also use Priestley duality to obtain a dual characterization of the resulting hierarchies. Among other things, this yields a natural generalization of Esakia’s representation of Heyting lattices to proHeyting lattices.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 5","pages":"Pages 1180-1204"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357725000199","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We utilize the Bruns–Lakser completion to introduce Bruns–Lakser towers of a meet-semilattice. This machinery enables us to develop various hierarchies inside the class of bounded distributive lattices, which measure κ-degrees of distributivity of bounded distributive lattices and their Dedekind–MacNeille completions. We also use Priestley duality to obtain a dual characterization of the resulting hierarchies. Among other things, this yields a natural generalization of Esakia’s representation of Heyting lattices to proHeyting lattices.
通过Bruns-Lakser塔的联合分配度
我们利用Bruns-Lakser完成引入Bruns-Lakser塔楼的半格子结构。这种机制使我们能够在有界分布格类中发展各种层次结构,这些层次结构测量有界分布格的分布度及其Dedekind-MacNeille补全。我们还使用普利斯特利对偶性来获得所得层次的对偶特征。除此之外,这产生了Esakia的Heyting格表示到proHeyting格的自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信