Journal of Geometric Analysis最新文献

筛选
英文 中文
Morrey Spaces on Domains: Different Approaches and Growth Envelopes. 域上的Morrey空间:不同的方法和成长包络。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-04-24 DOI: 10.1007/s12220-017-9843-y
Dorothee D Haroske, Cornelia Schneider, Leszek Skrzypczak
{"title":"Morrey Spaces on Domains: Different Approaches and Growth Envelopes.","authors":"Dorothee D Haroske,&nbsp;Cornelia Schneider,&nbsp;Leszek Skrzypczak","doi":"10.1007/s12220-017-9843-y","DOIUrl":"https://doi.org/10.1007/s12220-017-9843-y","url":null,"abstract":"<p><p>We deal with Morrey spaces on bounded domains <math><mi>Ω</mi></math> obtained by different approaches. In particular, we consider three settings <math> <mrow><msub><mi>M</mi> <mrow><mi>u</mi> <mo>,</mo> <mi>p</mi></mrow> </msub> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , <math> <mrow><msub><mi>M</mi> <mrow><mi>u</mi> <mo>,</mo> <mi>p</mi></mrow> </msub> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> and <math> <mrow><msub><mi>M</mi> <mrow><mi>u</mi> <mo>,</mo> <mi>p</mi></mrow> </msub> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> , where <math><mrow><mn>0</mn> <mo><</mo> <mi>p</mi> <mo>≤</mo> <mi>u</mi> <mo><</mo> <mi>∞</mi></mrow> </math> , commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes <math> <mrow><msub><mi>E</mi> <mi>G</mi></msub> <mrow><mo>(</mo> <msub><mi>M</mi> <mrow><mi>u</mi> <mo>,</mo> <mi>p</mi></mrow> </msub> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> as well as <math> <mrow><msub><mi>E</mi> <mi>G</mi></msub> <mrow><mo>(</mo> <msub><mi>M</mi> <mrow><mi>u</mi> <mo>,</mo> <mi>p</mi></mrow> </msub> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> </mrow> </math> , and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between <i>p</i> and <i>u</i> in the sense of whether <math> <mrow><mfrac><mi>n</mi> <mi>u</mi></mfrac> <mo>≥</mo> <mfrac><mn>1</mn> <mi>p</mi></mfrac> </mrow> </math> or <math> <mrow><mfrac><mi>n</mi> <mi>u</mi></mfrac> <mo><</mo> <mfrac><mn>1</mn> <mi>p</mi></mfrac> </mrow> </math> plays a decisive role when it comes to the behaviour of these spaces.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9843-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37203645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Global Weak Rigidity of the Gauss-Codazzi-Ricci Equations and Isometric Immersions of Riemannian Manifolds with Lower Regularity. Gauss-Codazzi-Ricci方程的整体弱刚性和低正则性黎曼流形的等距浸入。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-08-18 DOI: 10.1007/s12220-017-9893-1
Gui-Qiang G Chen, Siran Li
{"title":"Global Weak Rigidity of the Gauss-Codazzi-Ricci Equations and Isometric Immersions of Riemannian Manifolds with Lower Regularity.","authors":"Gui-Qiang G Chen,&nbsp;Siran Li","doi":"10.1007/s12220-017-9893-1","DOIUrl":"https://doi.org/10.1007/s12220-017-9893-1","url":null,"abstract":"<p><p>We are concerned with the global weak rigidity of the Gauss-Codazzi-Ricci (GCR) equations on Riemannian manifolds and the corresponding isometric immersions of Riemannian manifolds into the Euclidean spaces. We develop a unified intrinsic approach to establish the global weak rigidity of both the GCR equations and isometric immersions of the Riemannian manifolds, independent of the local coordinates, and provide further insights of the previous local results and arguments. The critical case has also been analyzed. To achieve this, we first reformulate the GCR equations with div-curl structure intrinsically on Riemannian manifolds and develop a global, intrinsic version of the div-curl lemma and other nonlinear techniques to tackle the global weak rigidity on manifolds. In particular, a general functional-analytic compensated compactness theorem on Banach spaces has been established, which includes the intrinsic div-curl lemma on Riemannian manifolds as a special case. The equivalence of global isometric immersions, the Cartan formalism, and the GCR equations on the Riemannian manifolds with lower regularity is established. We also prove a new weak rigidity result along the way, pertaining to the Cartan formalism, for Riemannian manifolds with lower regularity, and extend the weak rigidity results for Riemannian manifolds with corresponding different metrics.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9893-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37030165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics 一个近似阶的Phragmén-Lindelöf定理,以及渐近的传播
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-06-27 DOI: 10.1007/s12220-019-00203-5,
J. Jiménez-Garrido, J. Sanz, G. Schindl
{"title":"A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics","authors":"J. Jiménez-Garrido, J. Sanz, G. Schindl","doi":"10.1007/s12220-019-00203-5,","DOIUrl":"https://doi.org/10.1007/s12220-019-00203-5,","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41685299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Positive Scalar Curvature on Foliations:The Enlargeability 叶上的正标量曲率:可放大性
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-03-13 DOI: 10.1007/978-3-030-34953-0_22
Weiping Zhang
{"title":"Positive Scalar Curvature on Foliations:The Enlargeability","authors":"Weiping Zhang","doi":"10.1007/978-3-030-34953-0_22","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_22","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80626439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Asymptotics of Partial Density Functions for Divisors. 除数的偏密度函数的渐近性。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-09-19 DOI: 10.1007/s12220-016-9741-8
Julius Ross, Michael Singer
{"title":"Asymptotics of Partial Density Functions for Divisors.","authors":"Julius Ross,&nbsp;Michael Singer","doi":"10.1007/s12220-016-9741-8","DOIUrl":"https://doi.org/10.1007/s12220-016-9741-8","url":null,"abstract":"<p><p>We study the asymptotic behaviour of the partial density function associated to sections of a positive hermitian line bundle that vanish to a particular order along a fixed divisor <i>Y</i>. Assuming the data in question is invariant under an <math><msup><mi>S</mi> <mn>1</mn></msup> </math> -action (locally around <i>Y</i>) we prove that this density function has a distributional asymptotic expansion that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the existence of the \"forbidden region\" <i>R</i> on which the density function is exponentially small, and prove that it has an \"error-function\" behaviour across the boundary <math><mrow><mi>∂</mi> <mi>R</mi></mrow> </math> . As an illustrative application, we use this to study a certain natural function that can be associated to a divisor in a Kähler manifold.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9741-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37030162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below. Ricci曲率下有界流形的内在平坦性和Gromov-Hausdorff收敛性。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-09-28 DOI: 10.1007/s12220-016-9742-7
Rostislav Matveev, Jacobus W Portegies
{"title":"Intrinsic Flat and Gromov-Hausdorff Convergence of Manifolds with Ricci Curvature Bounded Below.","authors":"Rostislav Matveev,&nbsp;Jacobus W Portegies","doi":"10.1007/s12220-016-9742-7","DOIUrl":"https://doi.org/10.1007/s12220-016-9742-7","url":null,"abstract":"<p><p>We show that for a noncollapsing sequence of closed, connected, oriented Riemannian manifolds with Ricci curvature bounded below and diameter bounded above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In particular, the limiting current is essentially unique, has multiplicity one, and mass equal to the Hausdorff measure. Moreover, the limit spaces satisfy a constancy theorem.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9742-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
L h 2 -Functions in Unbounded Balanced Domains. l2 -无界平衡域上的函数。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2017-01-02 DOI: 10.1007/s12220-016-9754-3
Peter Pflug, Włodzimierz Zwonek
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math><ns0:msubsup><ns0:mi>L</ns0:mi> <ns0:mi>h</ns0:mi> <ns0:mn>2</ns0:mn></ns0:msubsup> </ns0:math> -Functions in Unbounded Balanced Domains.","authors":"Peter Pflug,&nbsp;Włodzimierz Zwonek","doi":"10.1007/s12220-016-9754-3","DOIUrl":"https://doi.org/10.1007/s12220-016-9754-3","url":null,"abstract":"<p><p>We investigate problems related with the existence of square integrable holomorphic functions on (unbounded) balanced domains. In particular, we solve the problem of Wiegerinck for balanced domains in dimension two. We also give a description of <math><msubsup><mi>L</mi> <mi>h</mi> <mn>2</mn></msubsup> </math> -domains of holomorphy in the class of balanced domains and present a purely algebraic criterion for homogeneous polynomials to be square integrable in a pseudoconvex balanced domain in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> . This allows easily to decide which pseudoconvex balanced domain in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> has a positive Bergman kernel and which admits the Bergman metric.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9754-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Worst Singularities of Plane Curves of Given Degree. 给定次平面曲线的最坏奇异性。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2017-02-07 DOI: 10.1007/s12220-017-9762-y
Ivan Cheltsov
{"title":"Worst Singularities of Plane Curves of Given Degree.","authors":"Ivan Cheltsov","doi":"10.1007/s12220-017-9762-y","DOIUrl":"https://doi.org/10.1007/s12220-017-9762-y","url":null,"abstract":"<p><p>We prove that <math> <mrow><mfrac><mn>2</mn> <mi>d</mi></mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>3</mn></mrow> <msup><mrow><mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mn>2</mn></msup> </mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mi>d</mi> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> </mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>5</mn></mrow> <mrow><msup><mi>d</mi> <mn>2</mn></msup> <mo>-</mo> <mn>3</mn> <mi>d</mi> <mo>+</mo> <mn>1</mn></mrow> </mfrac> </mrow> </math> and <math> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>3</mn></mrow> <mrow><mi>d</mi> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo></mrow> </mfrac> </math> are the smallest log canonical thresholds of reduced plane curves of degree <math><mrow><mi>d</mi> <mo>⩾</mo> <mn>3</mn></mrow> </math> , and we describe reduced plane curves of degree <i>d</i> whose log canonical thresholds are these numbers. As an application, we prove that <math> <mrow><mfrac><mn>2</mn> <mi>d</mi></mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>3</mn></mrow> <msup><mrow><mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mn>2</mn></msup> </mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> <mrow><mi>d</mi> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> </mfrac> <mo>,</mo> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>5</mn></mrow> <mrow><msup><mi>d</mi> <mn>2</mn></msup> <mo>-</mo> <mn>3</mn> <mi>d</mi> <mo>+</mo> <mn>1</mn></mrow> </mfrac> </mrow> </math> and <math> <mfrac><mrow><mn>2</mn> <mi>d</mi> <mo>-</mo> <mn>3</mn></mrow> <mrow><mi>d</mi> <mo>(</mo> <mi>d</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo></mrow> </mfrac> </math> are the smallest values of the <math><mi>α</mi></math> -invariant of Tian of smooth surfaces in <math> <msup><mrow><mi>P</mi></mrow> <mn>3</mn></msup> </math> of degree <math><mrow><mi>d</mi> <mo>⩾</mo> <mn>3</mn></mrow> </math> . We also prove that every reduced plane curve of degree <math><mrow><mi>d</mi> <mo>⩾</mo> <mn>4</mn></mrow> </math> whose log canonical threshold is smaller than <math><mfrac><mn>5</mn> <mrow><mn>2</mn> <mi>d</mi></mrow> </mfrac> </math> is GIT-unstable for the action of the group <math> <mrow><msub><mi>PGL</mi> <mn>3</mn></msub> <mrow><mo>(</mo> <mi>C</mi> <mo>)</mo></mrow> </mrow> </math> , and we describe GIT-semistable reduced plane curves with log canonical thresholds  <math><mfrac><mn>5</mn> <mrow><mn>2</mn> <mi>d</mi></mrow> </mfrac> </math> .</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9762-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Medial Axis and Singularities. 中轴和奇点。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2017-02-28 DOI: 10.1007/s12220-017-9763-x
Lev Birbrair, Maciej P Denkowski
{"title":"Medial Axis and Singularities.","authors":"Lev Birbrair,&nbsp;Maciej P Denkowski","doi":"10.1007/s12220-017-9763-x","DOIUrl":"https://doi.org/10.1007/s12220-017-9763-x","url":null,"abstract":"<p><p>This paper is devoted to the study of the <i>medial axes</i> of sets definable in polynomially bounded o-minimal structures, i.e. the sets of points with more than one closest point with respect to the Euclidean distance. Our point of view is that of singularity theory. While trying to make the paper self-contained, we gather here also a large bunch of basic results. Our main interest, however, goes to the characterization of those singular points of a definable, closed set <math><mrow><mi>X</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> , which are reached by the medial axis.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9763-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37029463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Injectivity and Stability for a Generic Class of Generalized Radon Transforms. 一类广义Radon变换的注入性和稳定性。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2017-01-01 Epub Date: 2016-06-30 DOI: 10.1007/s12220-016-9729-4
Andrew Homan, Hanming Zhou
{"title":"Injectivity and Stability for a Generic Class of Generalized Radon Transforms.","authors":"Andrew Homan,&nbsp;Hanming Zhou","doi":"10.1007/s12220-016-9729-4","DOIUrl":"https://doi.org/10.1007/s12220-016-9729-4","url":null,"abstract":"<p><p>Let (<i>M</i>, <i>g</i>) be an analytic, compact, Riemannian manifold with boundary, of dimension <math><mrow><mi>n</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> . We study a class of generalized Radon transforms, integrating over a family of hypersurfaces embedded in <i>M</i>, satisfying the Bolker condition (in: Quinto, Proceedings of conference \"Seventy-five Years of Radon Transforms\", Hong Kong, 1994). Using analytic microlocal analysis, we prove a microlocal regularity theorem for generalized Radon transforms on analytic manifolds defined on an analytic family of hypersurfaces. We then show injectivity and stability for an open, dense subset of smooth generalized Radon transforms satisfying the Bolker condition, including the analytic ones.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-016-9729-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36847503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信