{"title":"Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four.","authors":"Maciej Dunajski, Thomas Mettler","doi":"10.1007/s12220-017-9934-9","DOIUrl":null,"url":null,"abstract":"<p><p>Given a projective structure on a surface <math><mi>N</mi></math> , we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space <i>M</i> of a certain rank 2 affine bundle <math><mrow><mi>M</mi> <mo>→</mo> <mi>N</mi></mrow> </math> . The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on <math> <msup><mrow><mi>RP</mi></mrow> <mn>2</mn></msup> </math> is the non-compact real form of the Fubini-Study metric on <math><mrow><mi>M</mi> <mo>=</mo> <mi>SL</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> <mo>/</mo> <mi>GL</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo></mrow> </math> . We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9934-9","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9934-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Given a projective structure on a surface , we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space M of a certain rank 2 affine bundle . The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on is the non-compact real form of the Fubini-Study metric on . We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.