用泛函演算逼近双线性乘数。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2018-01-30 DOI:10.1007/s12220-017-9945-6
Błażej Wróbel
{"title":"用泛函演算逼近双线性乘数。","authors":"Błażej Wróbel","doi":"10.1007/s12220-017-9945-6","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on <math> <mrow> <msup><mrow><mi>Z</mi></mrow> <mi>d</mi></msup> <mo>,</mo></mrow> </math> general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9945-6","citationCount":"2","resultStr":"{\"title\":\"Approaching Bilinear Multipliers via a Functional Calculus.\",\"authors\":\"Błażej Wróbel\",\"doi\":\"10.1007/s12220-017-9945-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on <math> <mrow> <msup><mrow><mi>Z</mi></mrow> <mi>d</mi></msup> <mo>,</mo></mrow> </math> general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-017-9945-6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-017-9945-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9945-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个由(二元)谱定理定义的双线性乘子算子框架。在此框架下,我们证明了Coifman-Meyer型乘数定理和分数阶莱布尼茨规则。我们的理论适用于与Z d上的离散拉普拉斯算子相关的双线性乘子,一般双径向双线性Dunkl乘子,以及与Jacobi展开相关的双线性乘子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approaching Bilinear Multipliers via a Functional Calculus.

Approaching Bilinear Multipliers via a Functional Calculus.

Approaching Bilinear Multipliers via a Functional Calculus.

Approaching Bilinear Multipliers via a Functional Calculus.

We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on Z d , general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信