K-Semistability of cscK Manifolds with Transcendental Cohomology Class.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-10-16 DOI:10.1007/s12220-017-9942-9
Zakarias Sjöström Dyrefelt
{"title":"K-Semistability of cscK Manifolds with Transcendental Cohomology Class.","authors":"Zakarias Sjöström Dyrefelt","doi":"10.1007/s12220-017-9942-9","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson-Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9942-9","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9942-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

Abstract

We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson-Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.

Abstract Image

具有超越上同调类的cscK流形的k -半稳定性。
证明了具有超越上同调类的常数标量曲率Kähler (cscK)流形是k -半稳定的,自然地推广了极化流形的情况。根据R. Berman, T. Darvas和C. Lu最近关于k能量的性质的结果,进一步得出具有离散自同构群的cscK流形是一致k稳定的。作为证明的主要步骤,我们在一般的Kähler设置下,建立了一个(广义的)Donaldson-Futaki不变量与k能量沿弱测地线射线渐近斜率的关系式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信