曲率和直径有界条件下余维1坍缩的表征。

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-10-03 DOI:10.1007/s12220-017-9930-0
Saskia Roos
{"title":"曲率和直径有界条件下余维1坍缩的表征。","authors":"Saskia Roos","doi":"10.1007/s12220-017-9930-0","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> be the space of closed <i>n</i>-dimensional Riemannian manifolds (<i>M</i>, <i>g</i>) with <math><mrow><mi>diam</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo> <mo>≤</mo> <mi>D</mi></mrow> </math> and <math> <mrow><mrow><mo>|</mo></mrow> <msup><mo>sec</mo> <mi>M</mi></msup> <mrow><mo>|</mo> <mo>≤</mo> <mn>1</mn></mrow> </mrow> </math> . In this paper we consider sequences <math><mrow><mo>(</mo> <msub><mi>M</mi> <mi>i</mi></msub> <mo>,</mo> <msub><mi>g</mi> <mi>i</mi></msub> <mo>)</mo></mrow> </math> in <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> converging in the Gromov-Hausdorff topology to a compact metric space <i>Y</i>. We show, on the one hand, that the limit space of this sequence has at most codimension one if there is a positive number <i>r</i> such that the quotient <math> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <msubsup><mi>B</mi> <mi>r</mi> <msub><mi>M</mi> <mi>i</mi></msub> </msubsup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mrow> <msup><mrow><mi>inj</mi></mrow> <msub><mi>M</mi> <mi>i</mi></msub> </msup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mrow> </mfrac> </math> can be uniformly bounded from below by a positive constant <i>C</i>(<i>n</i>, <i>r</i>, <i>Y</i>) for all points <math><mrow><mi>x</mi> <mo>∈</mo> <msub><mi>M</mi> <mi>i</mi></msub> </mrow> </math> . On the other hand, we show that if the limit space has at most codimension one then for all positive <i>r</i> there is a positive constant <i>C</i>(<i>n</i>, <i>r</i>, <i>Y</i>) bounding the quotient <math> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <msubsup><mi>B</mi> <mi>r</mi> <msub><mi>M</mi> <mi>i</mi></msub> </msubsup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mrow> <msup><mrow><mi>inj</mi></mrow> <msub><mi>M</mi> <mi>i</mi></msub> </msup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mrow> </mfrac> </math> uniformly from below for all <math><mrow><mi>x</mi> <mo>∈</mo> <msub><mi>M</mi> <mi>i</mi></msub> </mrow> </math> . As a conclusion, we derive a uniform lower bound on the volume and a bound on the essential supremum of the sectional curvature for the closure of the space consisting of all manifolds in <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> with <math><mrow><mi>C</mi> <mo>≤</mo> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> <mrow><mi>inj</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mfrac> </mrow> </math> .</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9930-0","citationCount":"3","resultStr":"{\"title\":\"A Characterization of Codimension One Collapse Under Bounded Curvature and Diameter.\",\"authors\":\"Saskia Roos\",\"doi\":\"10.1007/s12220-017-9930-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> be the space of closed <i>n</i>-dimensional Riemannian manifolds (<i>M</i>, <i>g</i>) with <math><mrow><mi>diam</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo> <mo>≤</mo> <mi>D</mi></mrow> </math> and <math> <mrow><mrow><mo>|</mo></mrow> <msup><mo>sec</mo> <mi>M</mi></msup> <mrow><mo>|</mo> <mo>≤</mo> <mn>1</mn></mrow> </mrow> </math> . In this paper we consider sequences <math><mrow><mo>(</mo> <msub><mi>M</mi> <mi>i</mi></msub> <mo>,</mo> <msub><mi>g</mi> <mi>i</mi></msub> <mo>)</mo></mrow> </math> in <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> converging in the Gromov-Hausdorff topology to a compact metric space <i>Y</i>. We show, on the one hand, that the limit space of this sequence has at most codimension one if there is a positive number <i>r</i> such that the quotient <math> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <msubsup><mi>B</mi> <mi>r</mi> <msub><mi>M</mi> <mi>i</mi></msub> </msubsup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mrow> <msup><mrow><mi>inj</mi></mrow> <msub><mi>M</mi> <mi>i</mi></msub> </msup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mrow> </mfrac> </math> can be uniformly bounded from below by a positive constant <i>C</i>(<i>n</i>, <i>r</i>, <i>Y</i>) for all points <math><mrow><mi>x</mi> <mo>∈</mo> <msub><mi>M</mi> <mi>i</mi></msub> </mrow> </math> . On the other hand, we show that if the limit space has at most codimension one then for all positive <i>r</i> there is a positive constant <i>C</i>(<i>n</i>, <i>r</i>, <i>Y</i>) bounding the quotient <math> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <msubsup><mi>B</mi> <mi>r</mi> <msub><mi>M</mi> <mi>i</mi></msub> </msubsup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>)</mo></mrow> <mrow> <msup><mrow><mi>inj</mi></mrow> <msub><mi>M</mi> <mi>i</mi></msub> </msup> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mrow> </mfrac> </math> uniformly from below for all <math><mrow><mi>x</mi> <mo>∈</mo> <msub><mi>M</mi> <mi>i</mi></msub> </mrow> </math> . As a conclusion, we derive a uniform lower bound on the volume and a bound on the essential supremum of the sectional curvature for the closure of the space consisting of all manifolds in <math><mrow><mi>M</mi> <mo>(</mo> <mi>n</mi> <mo>,</mo> <mi>D</mi> <mo>)</mo></mrow> </math> with <math><mrow><mi>C</mi> <mo>≤</mo> <mfrac><mrow><mi>vol</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> <mrow><mi>inj</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mfrac> </mrow> </math> .</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-017-9930-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-017-9930-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9930-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设M (n, D)为闭n维黎曼流形(M, g)的空间,其中diam (M)≤D且| sec M |≤1。在本文中,我们考虑序列(M i g i)在M (n, D)收敛Gromov-Hausdorff拓扑紧度量空间Y我们显示,一方面,这个序列的极限空间最多余维数有一个如果r是一个正数,商卷(B r M (x))我inj M (x)可以通过积极的一致有界从下面常数C (n, r, Y)对所有点x∈M i。另一方面,我们证明了如果极限空间的余维不超过1,那么对于所有的正r,存在一个正常数C(n, r, Y),从下面一致地约束商vol (br mi (x)) inj mi (x),对于所有的x∈mi。作为结论,我们得到了由M (n, D)中C≤vol (M) inj (M)的所有流形组成的空间闭包的体积的一致下界和截面曲率的本质上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Characterization of Codimension One Collapse Under Bounded Curvature and Diameter.

Let M ( n , D ) be the space of closed n-dimensional Riemannian manifolds (Mg) with diam ( M ) D and | sec M | 1 . In this paper we consider sequences ( M i , g i ) in M ( n , D ) converging in the Gromov-Hausdorff topology to a compact metric space Y. We show, on the one hand, that the limit space of this sequence has at most codimension one if there is a positive number r such that the quotient vol ( B r M i ( x ) ) inj M i ( x ) can be uniformly bounded from below by a positive constant C(nrY) for all points x M i . On the other hand, we show that if the limit space has at most codimension one then for all positive r there is a positive constant C(nrY) bounding the quotient vol ( B r M i ( x ) ) inj M i ( x ) uniformly from below for all x M i . As a conclusion, we derive a uniform lower bound on the volume and a bound on the essential supremum of the sectional curvature for the closure of the space consisting of all manifolds in M ( n , D ) with C vol ( M ) inj ( M ) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信