The Trace Theorem, the Luzin N- and Morse-Sard Properties for the Sharp Case of Sobolev-Lorentz Mappings.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-10-14 DOI:10.1007/s12220-017-9936-7
Mikhail V Korobkov, Jan Kristensen
{"title":"The Trace Theorem, the Luzin <i>N</i>- and Morse-Sard Properties for the Sharp Case of Sobolev-Lorentz Mappings.","authors":"Mikhail V Korobkov,&nbsp;Jan Kristensen","doi":"10.1007/s12220-017-9936-7","DOIUrl":null,"url":null,"abstract":"<p><p>We prove Luzin <i>N</i>- and Morse-Sard properties for mappings <math><mrow><mi>v</mi> <mo>:</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>→</mo> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </mrow> </math> of the Sobolev-Lorentz class <math> <msubsup><mrow><mi>W</mi></mrow> <mrow><mi>p</mi> <mo>,</mo> <mn>1</mn></mrow> <mi>k</mi></msubsup> </math> , <math><mrow><mi>p</mi> <mo>=</mo> <mfrac><mi>n</mi> <mi>k</mi></mfrac> </mrow> </math> (this is the sharp case that guaranties the continuity of mappings). Our main tool is a new trace theorem for Riesz potentials of Lorentz functions for the limiting case <math><mrow><mi>q</mi> <mo>=</mo> <mi>p</mi></mrow> </math> . Using these results, we find also some very natural approximation and differentiability properties for functions in <math> <msubsup><mrow><mi>W</mi></mrow> <mrow><mi>p</mi> <mo>,</mo> <mn>1</mn></mrow> <mi>k</mi></msubsup> </math> with exceptional set of small Hausdorff content.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9936-7","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9936-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

Abstract

We prove Luzin N- and Morse-Sard properties for mappings v : R n R d of the Sobolev-Lorentz class W p , 1 k , p = n k (this is the sharp case that guaranties the continuity of mappings). Our main tool is a new trace theorem for Riesz potentials of Lorentz functions for the limiting case q = p . Using these results, we find also some very natural approximation and differentiability properties for functions in W p , 1 k with exceptional set of small Hausdorff content.

Sobolev-Lorentz映射的迹定理,Luzin N-和Morse-Sard性质。
我们证明了Sobolev-Lorentz类W p, 1 k, p = N k的映射v: R N→R d的Luzin N-和Morse-Sard性质(这是保证映射连续性的尖锐情况)。我们的主要工具是关于极限情况q = p下洛伦兹函数的Riesz势的一个新的迹定理。利用这些结果,我们还发现了wp, 1k中具有特殊小Hausdorff内容集的函数的一些非常自然的逼近性和可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信