Fatou Components of Attracting Skew-Products.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-04-06 DOI:10.1007/s12220-017-9811-6
Han Peters, Iris Marjan Smit
{"title":"Fatou Components of Attracting Skew-Products.","authors":"Han Peters,&nbsp;Iris Marjan Smit","doi":"10.1007/s12220-017-9811-6","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the existence of wandering Fatou components for polynomial skew-products in two complex variables. In 2004, the non-existence of wandering domains near a super-attracting invariant fiber was shown in Lilov (Fatou theory in two dimensions, PhD thesis, University of Michigan, 2004). In 2014, it was shown in Astorg et al. (Ann Math, arXiv:1411.1188 [math.DS], 2014) that wandering domains can exist near a parabolic invariant fiber. In Peters and Vivas (Math Z, arXiv:1408.0498, 2014), the geometrically attracting case was studied, and we continue this study here. We prove the non-existence of wandering domains for subhyperbolic attracting skew-products; this class contains the maps studied in Peters and Vivas (Math Z, arXiv:1408.0498, 2014). Using expansion properties on the Julia set in the invariant fiber, we prove bounds on the rate of escape of critical orbits in almost all fibers. Our main tool in describing these critical orbits is a possibly singular linearization map of unstable manifolds.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9811-6","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-017-9811-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/4/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

Abstract

We investigate the existence of wandering Fatou components for polynomial skew-products in two complex variables. In 2004, the non-existence of wandering domains near a super-attracting invariant fiber was shown in Lilov (Fatou theory in two dimensions, PhD thesis, University of Michigan, 2004). In 2014, it was shown in Astorg et al. (Ann Math, arXiv:1411.1188 [math.DS], 2014) that wandering domains can exist near a parabolic invariant fiber. In Peters and Vivas (Math Z, arXiv:1408.0498, 2014), the geometrically attracting case was studied, and we continue this study here. We prove the non-existence of wandering domains for subhyperbolic attracting skew-products; this class contains the maps studied in Peters and Vivas (Math Z, arXiv:1408.0498, 2014). Using expansion properties on the Julia set in the invariant fiber, we prove bounds on the rate of escape of critical orbits in almost all fibers. Our main tool in describing these critical orbits is a possibly singular linearization map of unstable manifolds.

吸引歪斜产品的法头元件。
我们研究了两个复变量多项式斜积的游荡法头分量的存在性。2004年,Lilov (Fatou theory In two dimensions,博士论文,University of Michigan, 2004)证明了超吸引不变光纤附近不存在游荡域。2014年,Astorg等人(Ann Math, arXiv:1411.1188)证明了这一点。DS], 2014),游荡域可以存在于抛物不变光纤附近。在Peters和Vivas (Math Z, arXiv:1408.0498, 2014)中,对几何吸引案例进行了研究,我们在这里继续研究。证明了次双曲吸引斜积的漫游域的不存在性;本课程包含Peters和Vivas中研究的地图(Math Z, arXiv:1408.0498, 2014)。利用不变光纤中Julia集的膨胀性质,证明了几乎所有光纤中临界轨道逃逸率的界。我们描述这些关键轨道的主要工具是不稳定流形的可能的奇异线性化映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信