Journal of Geometric Analysis最新文献

筛选
英文 中文
Equivariant K-theory and Resolution I: Abelian Actions 等变k理论与解析1:阿贝尔作用
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-07-22 DOI: 10.1007/978-3-030-34953-0_5
P. Dimakis, R. Melrose
{"title":"Equivariant K-theory and Resolution I: Abelian Actions","authors":"P. Dimakis, R. Melrose","doi":"10.1007/978-3-030-34953-0_5","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_5","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"78 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75090714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Class of Eternal Solutions to the G$$_{mathbf 2}$$-Laplacian Flow G$$_{mathbf 2}$-拉普拉斯流的一类永恒解
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-07-03 DOI: 10.1007/S12220-020-00447-6
A. Fino, Alberto Raffero
{"title":"A Class of Eternal Solutions to the G$$_{mathbf 2}$$-Laplacian Flow","authors":"A. Fino, Alberto Raffero","doi":"10.1007/S12220-020-00447-6","DOIUrl":"https://doi.org/10.1007/S12220-020-00447-6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"1 1","pages":"1-20"},"PeriodicalIF":1.1,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12220-020-00447-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47392086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Tian’s Properness Conjectures:An Introduction to Kähler Geometry 田的性质猜想:Kähler几何导论
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-07-02 DOI: 10.1007/978-3-030-34953-0_16
Y. Rubinstein
{"title":"Tian’s Properness Conjectures:An Introduction to Kähler Geometry","authors":"Y. Rubinstein","doi":"10.1007/978-3-030-34953-0_16","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_16","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78532517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Guided Tour to Normalized Volume 规范化音量的导览
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-06-19 DOI: 10.1007/978-3-030-34953-0_10
Chi Li, Yuchen Liu, Chenyang Xu
{"title":"A Guided Tour to Normalized Volume","authors":"Chi Li, Yuchen Liu, Chenyang Xu","doi":"10.1007/978-3-030-34953-0_10","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_10","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"32 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83111353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Some Questions in the Theory of Pseudoholomorphic Curves 伪全纯曲线理论中的几个问题
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-05-24 DOI: 10.1007/978-3-030-34953-0_24
A. Zinger
{"title":"Some Questions in the Theory of Pseudoholomorphic Curves","authors":"A. Zinger","doi":"10.1007/978-3-030-34953-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_24","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"49 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83522151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Singular Ricci Flows II 奇异里奇流2
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-04-09 DOI: 10.1007/978-3-030-34953-0_8
B. Kleiner, J. Lott
{"title":"Singular Ricci Flows II","authors":"B. Kleiner, J. Lott","doi":"10.1007/978-3-030-34953-0_8","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_8","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"11 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77222699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Bottom of Spectra and Amenability of Coverings 光谱底部和覆盖物的适应性
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-03-20 DOI: 10.1007/978-3-030-34953-0_2
W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis
{"title":"Bottom of Spectra and Amenability of Coverings","authors":"W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis","doi":"10.1007/978-3-030-34953-0_2","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_2","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"40 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91302777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On the Existence Problem of Einstein–Maxwell Kähler Metrics 爱因斯坦-麦克斯韦的存在性问题Kähler度量
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-03-19 DOI: 10.1007/978-3-030-34953-0_6
A. Futaki, Hajime Ono
{"title":"On the Existence Problem of Einstein–Maxwell Kähler Metrics","authors":"A. Futaki, Hajime Ono","doi":"10.1007/978-3-030-34953-0_6","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"10 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79955074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
K-Semistability of cscK Manifolds with Transcendental Cohomology Class. 具有超越上同调类的cscK流形的k -半稳定性。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-10-16 DOI: 10.1007/s12220-017-9942-9
Zakarias Sjöström Dyrefelt
{"title":"K-Semistability of cscK Manifolds with Transcendental Cohomology Class.","authors":"Zakarias Sjöström Dyrefelt","doi":"10.1007/s12220-017-9942-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9942-9","url":null,"abstract":"<p><p>We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson-Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 4","pages":"2927-2960"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9942-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36822412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four. 四维投影曲面的规范理论与反自对偶爱因斯坦度量。
IF 1.1 2区 数学
Journal of Geometric Analysis Pub Date : 2018-01-01 Epub Date: 2017-10-12 DOI: 10.1007/s12220-017-9934-9
Maciej Dunajski, Thomas Mettler
{"title":"Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four.","authors":"Maciej Dunajski,&nbsp;Thomas Mettler","doi":"10.1007/s12220-017-9934-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9934-9","url":null,"abstract":"<p><p>Given a projective structure on a surface <math><mi>N</mi></math> , we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space <i>M</i> of a certain rank 2 affine bundle <math><mrow><mi>M</mi> <mo>→</mo> <mi>N</mi></mrow> </math> . The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on <math> <msup><mrow><mi>RP</mi></mrow> <mn>2</mn></msup> </math> is the non-compact real form of the Fubini-Study metric on <math><mrow><mi>M</mi> <mo>=</mo> <mi>SL</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> <mo>/</mo> <mi>GL</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo></mrow> </math> . We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 3","pages":"2780-2811"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9934-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信