{"title":"Equivariant K-theory and Resolution I: Abelian Actions","authors":"P. Dimakis, R. Melrose","doi":"10.1007/978-3-030-34953-0_5","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_5","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"78 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75090714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Class of Eternal Solutions to the G$$_{mathbf 2}$$-Laplacian Flow","authors":"A. Fino, Alberto Raffero","doi":"10.1007/S12220-020-00447-6","DOIUrl":"https://doi.org/10.1007/S12220-020-00447-6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"1 1","pages":"1-20"},"PeriodicalIF":1.1,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12220-020-00447-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47392086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some Questions in the Theory of Pseudoholomorphic Curves","authors":"A. Zinger","doi":"10.1007/978-3-030-34953-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_24","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"49 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83522151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis
{"title":"Bottom of Spectra and Amenability of Coverings","authors":"W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis","doi":"10.1007/978-3-030-34953-0_2","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_2","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"40 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91302777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Existence Problem of Einstein–Maxwell Kähler Metrics","authors":"A. Futaki, Hajime Ono","doi":"10.1007/978-3-030-34953-0_6","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"10 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79955074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"K-Semistability of cscK Manifolds with Transcendental Cohomology Class.","authors":"Zakarias Sjöström Dyrefelt","doi":"10.1007/s12220-017-9942-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9942-9","url":null,"abstract":"<p><p>We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson-Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 4","pages":"2927-2960"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9942-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36822412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four.","authors":"Maciej Dunajski, Thomas Mettler","doi":"10.1007/s12220-017-9934-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9934-9","url":null,"abstract":"<p><p>Given a projective structure on a surface <math><mi>N</mi></math> , we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space <i>M</i> of a certain rank 2 affine bundle <math><mrow><mi>M</mi> <mo>→</mo> <mi>N</mi></mrow> </math> . The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on <math> <msup><mrow><mi>RP</mi></mrow> <mn>2</mn></msup> </math> is the non-compact real form of the Fubini-Study metric on <math><mrow><mi>M</mi> <mo>=</mo> <mi>SL</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> <mo>/</mo> <mi>GL</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo></mrow> </math> . We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 3","pages":"2780-2811"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9934-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}