{"title":"Some Questions in the Theory of Pseudoholomorphic Curves","authors":"A. Zinger","doi":"10.1007/978-3-030-34953-0_24","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_24","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"49 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83522151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis
{"title":"Bottom of Spectra and Amenability of Coverings","authors":"W. Ballmann, Henrik Matthiesen, Panagiotis Polymerakis","doi":"10.1007/978-3-030-34953-0_2","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_2","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"40 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91302777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Existence Problem of Einstein–Maxwell Kähler Metrics","authors":"A. Futaki, Hajime Ono","doi":"10.1007/978-3-030-34953-0_6","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"10 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79955074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"K-Semistability of cscK Manifolds with Transcendental Cohomology Class.","authors":"Zakarias Sjöström Dyrefelt","doi":"10.1007/s12220-017-9942-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9942-9","url":null,"abstract":"<p><p>We prove that constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class are K-semistable, naturally generalising the situation for polarised manifolds. Relying on a recent result by R. Berman, T. Darvas and C. Lu regarding properness of the K-energy, it moreover follows that cscK manifolds with discrete automorphism group are uniformly K-stable. As a main step of the proof we establish, in the general Kähler setting, a formula relating the (generalised) Donaldson-Futaki invariant to the asymptotic slope of the K-energy along weak geodesic rays.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 4","pages":"2927-2960"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9942-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36822412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four.","authors":"Maciej Dunajski, Thomas Mettler","doi":"10.1007/s12220-017-9934-9","DOIUrl":"https://doi.org/10.1007/s12220-017-9934-9","url":null,"abstract":"<p><p>Given a projective structure on a surface <math><mi>N</mi></math> , we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space <i>M</i> of a certain rank 2 affine bundle <math><mrow><mi>M</mi> <mo>→</mo> <mi>N</mi></mrow> </math> . The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on <math> <msup><mrow><mi>RP</mi></mrow> <mn>2</mn></msup> </math> is the non-compact real form of the Fubini-Study metric on <math><mrow><mi>M</mi> <mo>=</mo> <mi>SL</mi> <mo>(</mo> <mn>3</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo> <mo>/</mo> <mi>GL</mi> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>R</mi> <mo>)</mo></mrow> </math> . We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 3","pages":"2780-2811"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9934-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Polyakov Formula for Sectors.","authors":"Clara L Aldana, Julie Rowlett","doi":"10.1007/s12220-017-9888-y","DOIUrl":"10.1007/s12220-017-9888-y","url":null,"abstract":"<p><p>We consider finite area convex Euclidean circular sectors. We prove a variational Polyakov formula which shows how the zeta-regularized determinant of the Laplacian varies with respect to the opening angle. Varying the angle corresponds to a conformal deformation in the direction of a conformal factor with a logarithmic singularity at the origin. We compute explicitly all the contributions to this formula coming from the different parts of the sector. In the process, we obtain an explicit expression for the heat kernel on an infinite area sector using Carslaw-Sommerfeld's heat kernel. We also compute the zeta-regularized determinant of rectangular domains of unit area and prove that it is uniquely maximized by the square.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 2","pages":"1773-1839"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9888-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approaching Bilinear Multipliers via a Functional Calculus.","authors":"Błażej Wróbel","doi":"10.1007/s12220-017-9945-6","DOIUrl":"https://doi.org/10.1007/s12220-017-9945-6","url":null,"abstract":"<p><p>We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on <math> <mrow> <msup><mrow><mi>Z</mi></mrow> <mi>d</mi></msup> <mo>,</mo></mrow> </math> general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 4","pages":"3048-3080"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9945-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36822413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Families of Strictly Pseudoconvex Domains and Peak Functions.","authors":"Arkadiusz Lewandowski","doi":"10.1007/s12220-017-9912-2","DOIUrl":"https://doi.org/10.1007/s12220-017-9912-2","url":null,"abstract":"<p><p>We prove that given a family <math><mrow><mo>(</mo> <msub><mi>G</mi> <mi>t</mi></msub> <mo>)</mo></mrow> </math> of strictly pseudoconvex domains varying in <math> <msup><mrow><mi>C</mi></mrow> <mn>2</mn></msup> </math> topology on domains, there exists a continuously varying family of peak functions <math><msub><mi>h</mi> <mrow><mi>t</mi> <mo>,</mo> <mi>ζ</mi></mrow> </msub> </math> for all <math><msub><mi>G</mi> <mi>t</mi></msub> </math> at every <math><mrow><mi>ζ</mi> <mo>∈</mo> <mi>∂</mi> <msub><mi>G</mi> <mi>t</mi></msub> </mrow> </math> .</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"28 3","pages":"2466-2476"},"PeriodicalIF":1.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-017-9912-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37028505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}