{"title":"Towards a Liouville Theorem for Continuous Viscosity Solutions to Fully Nonlinear Elliptic Equations in Conformal Geometry","authors":"Yanyan Li, Luc Nguyen, Bo Wang","doi":"10.1007/978-3-030-34953-0_11","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_11","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"144 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2019-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74025078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Holomorphic Sectional Curvature of Complex Finsler Manifolds.","authors":"Xueyuan Wan","doi":"10.1007/s12220-018-9985-6","DOIUrl":"https://doi.org/10.1007/s12220-018-9985-6","url":null,"abstract":"<p><p>In this paper, we get an inequality in terms of holomorphic sectional curvature of complex Finsler metrics. As applications, we prove a Schwarz Lemma from a complete Riemannian manifold to a complex Finsler manifold. We also show that a strongly pseudoconvex complex Finsler manifold with semi-positive but not identically zero holomorphic sectional curvature has negative Kodaira dimension under an extra condition.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"194-216"},"PeriodicalIF":1.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9985-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36945698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Weak and Strong Type <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:math> - <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msub> </ns0:math> Estimates for Sparsely Dominated Operators.","authors":"Dorothee Frey, Zoe Nieraeth","doi":"10.1007/s12220-018-9989-2","DOIUrl":"https://doi.org/10.1007/s12220-018-9989-2","url":null,"abstract":"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"247-282"},"PeriodicalIF":1.1,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36945699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Big and Nef Classes, Futaki Invariant and Resolutions of Cubic Threefolds","authors":"C. Arezzo, A. D. Vedova","doi":"10.1007/978-3-030-34953-0_1","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_1","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"321 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75092447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local Moduli of Scalar-flat Kähler ALE Surfaces","authors":"Jiyuan Han, Jeff A. Viaclovsky","doi":"10.1007/978-3-030-34953-0_7","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_7","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76356682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pluriclosed Flow and the Geometrization of Complex Surfaces","authors":"J. Streets","doi":"10.1007/978-3-030-34953-0_19","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_19","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84928853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant K-theory and Resolution I: Abelian Actions","authors":"P. Dimakis, R. Melrose","doi":"10.1007/978-3-030-34953-0_5","DOIUrl":"https://doi.org/10.1007/978-3-030-34953-0_5","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"78 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75090714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Class of Eternal Solutions to the G$$_{mathbf 2}$$-Laplacian Flow","authors":"A. Fino, Alberto Raffero","doi":"10.1007/S12220-020-00447-6","DOIUrl":"https://doi.org/10.1007/S12220-020-00447-6","url":null,"abstract":"","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"1 1","pages":"1-20"},"PeriodicalIF":1.1,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12220-020-00447-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47392086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}