Holomorphic Sectional Curvature of Complex Finsler Manifolds.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2019-01-01 Epub Date: 2018-01-25 DOI:10.1007/s12220-018-9985-6
Xueyuan Wan
{"title":"Holomorphic Sectional Curvature of Complex Finsler Manifolds.","authors":"Xueyuan Wan","doi":"10.1007/s12220-018-9985-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we get an inequality in terms of holomorphic sectional curvature of complex Finsler metrics. As applications, we prove a Schwarz Lemma from a complete Riemannian manifold to a complex Finsler manifold. We also show that a strongly pseudoconvex complex Finsler manifold with semi-positive but not identically zero holomorphic sectional curvature has negative Kodaira dimension under an extra condition.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"194-216"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9985-6","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-9985-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we get an inequality in terms of holomorphic sectional curvature of complex Finsler metrics. As applications, we prove a Schwarz Lemma from a complete Riemannian manifold to a complex Finsler manifold. We also show that a strongly pseudoconvex complex Finsler manifold with semi-positive but not identically zero holomorphic sectional curvature has negative Kodaira dimension under an extra condition.

复Finsler流形的全纯截面曲率。
本文得到了一个关于复Finsler度量全纯截面曲率的不等式。作为应用,我们证明了一个从完全黎曼流形到复芬斯勒流形的Schwarz引理。我们还证明了具有半正但不等零全纯截面曲率的强伪凸复Finsler流形在一个附加条件下具有负的Kodaira维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信