A Phragmén-Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2020-01-01 Epub Date: 2019-05-10 DOI:10.1007/s12220-019-00203-5
Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl
{"title":"A Phragmén-Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics.","authors":"Javier Jiménez-Garrido,&nbsp;Javier Sanz,&nbsp;Gerhard Schindl","doi":"10.1007/s12220-019-00203-5","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that, for asymptotically bounded holomorphic functions in a sector in <math><mrow><mi>C</mi> <mo>,</mo></mrow> </math> an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén-Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-019-00203-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-019-00203-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We prove that, for asymptotically bounded holomorphic functions in a sector in C , an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmén-Lindelöf theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelöf and Valiron.

一个近似阶的Phragmén-Lindelöf定理,以及渐近的传播。
证明了C中扇形上的渐近有界全纯函数,在约束为非零近似阶的对数凸序列的条件下,向顶点的单向渐近展开式需要在控制为同一序列的整个扇形上的渐近展开式。这推广了Fruchard和Zhang关于Gevrey渐近展开的结果,并且该证明强烈地依赖于经典Phragmén-Lindelöf定理的一个适当的改进版本,这里得到的函数在一个扇形中的增长是由Lindelöf和Valiron意义上的非零近似阶指定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信