{"title":"超可微CR流形。","authors":"Stefan Fürdös","doi":"10.1007/s12220-019-00191-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, the notion of ultradifferentiable CR manifold is introduced and an ultradifferentiable regularity result for finitely nondegenerate CR mappings is proven. Here, ultradifferentiable means with respect to Denjoy-Carleman classes defined by weight sequences. Furthermore, the regularity of infinitesimal CR automorphisms on ultradifferentiable abstract CR manifolds is investigated.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"30 3","pages":"3064-3098"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-019-00191-6","citationCount":"3","resultStr":"{\"title\":\"Ultradifferentiable CR Manifolds.\",\"authors\":\"Stefan Fürdös\",\"doi\":\"10.1007/s12220-019-00191-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, the notion of ultradifferentiable CR manifold is introduced and an ultradifferentiable regularity result for finitely nondegenerate CR mappings is proven. Here, ultradifferentiable means with respect to Denjoy-Carleman classes defined by weight sequences. Furthermore, the regularity of infinitesimal CR automorphisms on ultradifferentiable abstract CR manifolds is investigated.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"30 3\",\"pages\":\"3064-3098\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-019-00191-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-019-00191-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-019-00191-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article, the notion of ultradifferentiable CR manifold is introduced and an ultradifferentiable regularity result for finitely nondegenerate CR mappings is proven. Here, ultradifferentiable means with respect to Denjoy-Carleman classes defined by weight sequences. Furthermore, the regularity of infinitesimal CR automorphisms on ultradifferentiable abstract CR manifolds is investigated.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.