{"title":"稀疏支配算子的弱和强A 1 - A∞估计。","authors":"Dorothee Frey, Zoe Nieraeth","doi":"10.1007/s12220-018-9989-2","DOIUrl":null,"url":null,"abstract":"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"247-282"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2","citationCount":"18","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Weak and Strong Type <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:math> - <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msub> </ns0:math> Estimates for Sparsely Dominated Operators.\",\"authors\":\"Dorothee Frey, Zoe Nieraeth\",\"doi\":\"10.1007/s12220-018-9989-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"29 1\",\"pages\":\"247-282\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-018-9989-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-9989-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
摘要
我们考虑算子T满足一个稀疏支配性质|⟨T f, g⟩|≤c∑Q∈S⟨f⟩p 0, Q⟨g⟩Q 0 ', Q | Q |平均指数1≤p 0 Q 0≤∞。我们证明了p 0 p q 0的加权强型有界性,并利用新技术用定量混合a1 - A∞估计证明了加权弱型(p 0, p 0)有界性,推广了Lerner, Ombrosi, and p兼并和Hytönen and p兼并的结果。即使在p 0 = 1的情况下,我们也改进了他们的结果,因为我们没有利用算子t的Hörmander条件。此外,我们还建立了一个对偶弱类型(q0 ', q0 ')估计。在最后一部分中,我们给出了加权强类型界的最优性的结果,包括以前由Bernicot, Frey和Petermichl得到的结果。
Weak and Strong Type A1 - A∞ Estimates for Sparsely Dominated Operators.
We consider operators T satisfying a sparse domination property with averaging exponents . We prove weighted strong type boundedness for and use new techniques to prove weighted weak type boundedness with quantitative mixed - estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case we improve upon their results as we do not make use of a Hörmander condition of the operator T. Moreover, we also establish a dual weak type estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.