{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Weak and Strong Type <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:math> - <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msub> </ns0:math> Estimates for Sparsely Dominated Operators.","authors":"Dorothee Frey, Zoe Nieraeth","doi":"10.1007/s12220-018-9989-2","DOIUrl":null,"url":null,"abstract":"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"247-282"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-9989-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
Abstract
We consider operators T satisfying a sparse domination property with averaging exponents . We prove weighted strong type boundedness for and use new techniques to prove weighted weak type boundedness with quantitative mixed - estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case we improve upon their results as we do not make use of a Hörmander condition of the operator T. Moreover, we also establish a dual weak type estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.