Weak and Strong Type A 1 - A Estimates for Sparsely Dominated Operators.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2019-01-01 Epub Date: 2018-02-06 DOI:10.1007/s12220-018-9989-2
Dorothee Frey, Zoe Nieraeth
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Weak and Strong Type <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:math> - <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msub> </ns0:math> Estimates for Sparsely Dominated Operators.","authors":"Dorothee Frey,&nbsp;Zoe Nieraeth","doi":"10.1007/s12220-018-9989-2","DOIUrl":null,"url":null,"abstract":"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"29 1","pages":"247-282"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-9989-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

Abstract

We consider operators T satisfying a sparse domination property | T f , g | c Q S f p 0 , Q g q 0 ' , Q | Q | with averaging exponents 1 p 0 < q 0 . We prove weighted strong type boundedness for p 0 < p < q 0 and use new techniques to prove weighted weak type ( p 0 , p 0 ) boundedness with quantitative mixed A 1 - A estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case p 0 = 1 we improve upon their results as we do not make use of a Hörmander condition of the operator T. Moreover, we also establish a dual weak type ( q 0 ' , q 0 ' ) estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.

稀疏支配算子的弱和强A 1 - A∞估计。
我们考虑算子T满足一个稀疏支配性质|⟨T f, g⟩|≤c∑Q∈S⟨f⟩p 0, Q⟨g⟩Q 0 ', Q | Q |平均指数1≤p 0 Q 0≤∞。我们证明了p 0 p q 0的加权强型有界性,并利用新技术用定量混合a1 - A∞估计证明了加权弱型(p 0, p 0)有界性,推广了Lerner, Ombrosi, and p兼并和Hytönen and p兼并的结果。即使在p 0 = 1的情况下,我们也改进了他们的结果,因为我们没有利用算子t的Hörmander条件。此外,我们还建立了一个对偶弱类型(q0 ', q0 ')估计。在最后一部分中,我们给出了加权强类型界的最优性的结果,包括以前由Bernicot, Frey和Petermichl得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信