Weak and Strong Type A 1 - A Estimates for Sparsely Dominated Operators.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2019-01-01 Epub Date: 2018-02-06 DOI:10.1007/s12220-018-9989-2
Dorothee Frey, Zoe Nieraeth
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Weak and Strong Type <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mn>1</ns0:mn></ns0:msub> </ns0:math> - <ns0:math><ns0:msub><ns0:mi>A</ns0:mi> <ns0:mi>∞</ns0:mi></ns0:msub> </ns0:math> Estimates for Sparsely Dominated Operators.","authors":"Dorothee Frey,&nbsp;Zoe Nieraeth","doi":"10.1007/s12220-018-9989-2","DOIUrl":null,"url":null,"abstract":"<p><p>We consider operators <i>T</i> satisfying a sparse domination property <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>|</mo> <mrow><mo>⟨</mo> <mi>T</mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mo>|</mo></mrow> <mo>≤</mo> <mi>c</mi> <munder><mo>∑</mo> <mrow><mi>Q</mi> <mo>∈</mo> <mi>S</mi></mrow> </munder> <msub><mrow><mo>⟨</mo> <mi>f</mi> <mo>⟩</mo></mrow> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <mi>Q</mi></mrow> </msub> <msub><mrow><mo>⟨</mo> <mi>g</mi> <mo>⟩</mo></mrow> <mrow><msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <mi>Q</mi></mrow> </msub> <mrow><mo>|</mo> <mi>Q</mi> <mo>|</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> with averaging exponents <math><mrow><mn>1</mn> <mo>≤</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> <mo>≤</mo> <mi>∞</mi></mrow> </math> . We prove weighted strong type boundedness for <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo><</mo> <mi>p</mi> <mo><</mo> <msub><mi>q</mi> <mn>0</mn></msub> </mrow> </math> and use new techniques to prove weighted weak type <math><mrow><mo>(</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> boundedness with quantitative mixed <math><msub><mi>A</mi> <mn>1</mn></msub> </math> - <math><msub><mi>A</mi> <mi>∞</mi></msub> </math> estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case <math> <mrow><msub><mi>p</mi> <mn>0</mn></msub> <mo>=</mo> <mn>1</mn></mrow> </math> we improve upon their results as we do not make use of a Hörmander condition of the operator <i>T</i>. Moreover, we also establish a dual weak type <math><mrow><mo>(</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>,</mo> <msubsup><mi>q</mi> <mn>0</mn> <mo>'</mo></msubsup> <mo>)</mo></mrow> </math> estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-018-9989-2","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-018-9989-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

We consider operators T satisfying a sparse domination property | T f , g | c Q S f p 0 , Q g q 0 ' , Q | Q | with averaging exponents 1 p 0 < q 0 . We prove weighted strong type boundedness for p 0 < p < q 0 and use new techniques to prove weighted weak type ( p 0 , p 0 ) boundedness with quantitative mixed A 1 - A estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case p 0 = 1 we improve upon their results as we do not make use of a Hörmander condition of the operator T. Moreover, we also establish a dual weak type ( q 0 ' , q 0 ' ) estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.

稀疏支配算子的弱和强A 1 - A∞估计。
我们考虑算子T满足一个稀疏支配性质|⟨T f, g⟩|≤c∑Q∈S⟨f⟩p 0, Q⟨g⟩Q 0 ', Q | Q |平均指数1≤p 0 Q 0≤∞。我们证明了p 0 p q 0的加权强型有界性,并利用新技术用定量混合a1 - A∞估计证明了加权弱型(p 0, p 0)有界性,推广了Lerner, Ombrosi, and p兼并和Hytönen and p兼并的结果。即使在p 0 = 1的情况下,我们也改进了他们的结果,因为我们没有利用算子t的Hörmander条件。此外,我们还建立了一个对偶弱类型(q0 ', q0 ')估计。在最后一部分中,我们给出了加权强类型界的最优性的结果,包括以前由Bernicot, Frey和Petermichl得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信