Trends in Environmental Analytical Chemistry最新文献

筛选
英文 中文
State of the art overview wearable biohazard gas sensors based on nanosheets for environment monitoring applications 环境监测应用中基于纳米片的可穿戴生物危害气体传感器的现状概述
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-14 DOI: 10.1016/j.teac.2023.e00215
Chen Liu , Qianqian Wang , Chunge Wang , Qingfeng Wang , Wenjie Zhao , Zhaotao He , Yuhan Zheng , Ying Jing , Xu Sun , Sheng Zhang
{"title":"State of the art overview wearable biohazard gas sensors based on nanosheets for environment monitoring applications","authors":"Chen Liu ,&nbsp;Qianqian Wang ,&nbsp;Chunge Wang ,&nbsp;Qingfeng Wang ,&nbsp;Wenjie Zhao ,&nbsp;Zhaotao He ,&nbsp;Yuhan Zheng ,&nbsp;Ying Jing ,&nbsp;Xu Sun ,&nbsp;Sheng Zhang","doi":"10.1016/j.teac.2023.e00215","DOIUrl":"https://doi.org/10.1016/j.teac.2023.e00215","url":null,"abstract":"<div><p>Nanosheets, a classification of two-dimensional nanomaterials with extremely high surface-to-volume ratios, have attracted great attention in various fields with vast applications. Owing to their specific structures, nanosheets possess prominent sensing properties including catalyst, electrical properties, etc., together with unique physical properties like remarkable adhesion, stretchability, and flexibility. Therefore, nanosheet materials could play a significant role in the field of wearable biohazard gas sensors which is one of the rising research topics in the field of biosensors. In this review, the state-of-the-art development of wearable biohazard gas sensors based on nanosheet materials is discussed and classified into four categories including wearable biohazard gas sensors based on nanosheets towards the monitoring of NO<sub>2</sub>, NH<sub>3</sub>, other gases, and multiple gases. Finally, the research trend in wearable biohazard gas sensors based on nanosheets is prospected.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"40 ","pages":"Article e00215"},"PeriodicalIF":11.2,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications 基于纳米材料的环境化学传感器的绿色合成方案、毒性和最新进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00204
Tawfik A. Saleh , Ganjar Fadillah
{"title":"Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications","authors":"Tawfik A. Saleh ,&nbsp;Ganjar Fadillah","doi":"10.1016/j.teac.2023.e00204","DOIUrl":"10.1016/j.teac.2023.e00204","url":null,"abstract":"<div><p>This study focuses on applying NPs<span><span> synthesized via the green method for chemical sensor applications. The development of green NPs materials as chemical sensors have been widely used and explored in various applications such as the environment, food, agriculture, and medicine. Several methods of green synthesis approach have been studied in producing NPs. The advantages, disadvantages, mechanism of the synthesis process and influencing factors have been thoroughly summarized to produce NPs material. This review also discusses the </span>toxicokinetic properties and stability of NPs, along with possible solutions to avoid their side effects. The physical and chemical unique properties of NPs, such as high surface area, good stability, thermal, and catalytic, depend on the synthesis route and the modifier attached to the NPs. Furthermore, the application and mechanism of the synthesized green NPs have been reported, especially in detecting organic compounds/biomolecules, toxic gases, and heavy metals</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00204"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41637204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Greenness evaluation of sample preparation methods by GAPI for the determination of pesticides in grape: A review GAPI法测定葡萄中农药样品制备方法的绿色性评价
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00206
Yerkanat Syrgabek , Mereke Alimzhanova , Pedro A. García-Encina , Juan José Jiménez , Rebeca López-Serna
{"title":"Greenness evaluation of sample preparation methods by GAPI for the determination of pesticides in grape: A review","authors":"Yerkanat Syrgabek ,&nbsp;Mereke Alimzhanova ,&nbsp;Pedro A. García-Encina ,&nbsp;Juan José Jiménez ,&nbsp;Rebeca López-Serna","doi":"10.1016/j.teac.2023.e00206","DOIUrl":"10.1016/j.teac.2023.e00206","url":null,"abstract":"<div><p>Pesticides are major contaminants in grapes and their by-products. Different methods for sample preparation and separation are used for determining different pesticides in grapes. However, until now, the environmental friendliness<span> of these methods has not been assessed fully. At present time, several tools such as Eco-Scale, NEMI, GAPI, AGREE are available to evaluate the environmental sustainability of methods such as sample preparation, extraction, and separation. Each tool has its benefits and drawbacks. Moreover, the results obtained with the help of each tool may lead to different conclusions. This paper is aimed to review different sample preparation methods for the determination of pesticides in grapes found in the scientific literature. The Green Analytical Procedure Index (GAPI) tool was chosen to evaluate the environmental friendliness of each methodology in this study. This research also shows the importance of using aforementioned tools in the development of future analytical methods before using practical tests. In addition to greenness, tool helps to assess assessing minimize the use of chemical hazards and avoid risks to human health and emissions to the environment. Method greenness assessment is suggested to be included in method validation protocols.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00206"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46309063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent developments in green magnetic nanoparticles for extraction and preconcentration of pollutants from environmental samples 绿色磁性纳米颗粒萃取和预富集环境样品中污染物的最新进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00211
Asmaa Kamal El-Deen , Chaudhery Mustansar Hussain
{"title":"Recent developments in green magnetic nanoparticles for extraction and preconcentration of pollutants from environmental samples","authors":"Asmaa Kamal El-Deen ,&nbsp;Chaudhery Mustansar Hussain","doi":"10.1016/j.teac.2023.e00211","DOIUrl":"10.1016/j.teac.2023.e00211","url":null,"abstract":"<div><p><span>Magnetic nanoparticles<span> (MNPs) have recently emerged as significant materials in the development of a variety of sectors, including analytical chemistry, by virtue of their unique properties making them appropriate for a wide range of applications. They have exceptional performance in extracting and enriching a wide range of target analytes such as trace pollutants due to their superparamagnetic properties, ease of separation, and surface modification as well as selective adsorption capacity. However, the toxicity of such materials has urged efforts to search for green production ways so that assuring reduced toxicity levels and permitting unlimited applications. Current research and analysis on biosynthesized green MNPs for the identification and quantification of </span></span>environmental contaminants<span> are widespread. Consequently, this review article focuses on several studies which outline novel strategies for synthesizing MNPs from green sources, as well as the future direction of research in this field. The recent applications of green MNPs (from 2016 to June 2023) in the separation and preconcentration of various pollutants including both organic and inorganic ones in different environmental matrices are demonstrated. Potential challenges and future perspectives are also highlighted. This review can serve as a roadmap and inspire further research in this area.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00211"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42553592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic analytical extractions of forensic samples: Latest developments and future perspectives 法医样品的磁性分析提取:最新进展和未来展望
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00209
Asmaa Kamal El-Deen , Chaudhery Mustansar Hussain
{"title":"Magnetic analytical extractions of forensic samples: Latest developments and future perspectives","authors":"Asmaa Kamal El-Deen ,&nbsp;Chaudhery Mustansar Hussain","doi":"10.1016/j.teac.2023.e00209","DOIUrl":"10.1016/j.teac.2023.e00209","url":null,"abstract":"<div><p>In response to the increasing demand for precise diagnosis in criminal investigations, magnetic extraction techniques have gained increased attention in forensic analysis. Magnetic extraction is usually based on magnetic materials that could be functionalized to obtain the appropriate functional groups for increasing selectivity and enhancing the analyte recovery. They offer efficient analyte separation and/or enrichment from samples with complex matrices when used in magnetic extraction. This review emphasizes several types of magnetic extraction techniques (including solid phase extraction<span>, stir bar sorptive extraction, liquid phase microextraction, and others) with their evolution in forensic science. It also provides insight into the potential benefits of combining forensic science and magnetic extraction, which will result in superior scientific analysis. The challenges and prospects of developing various magnetic extraction techniques in forensic science are also addressed.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00209"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43622359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of DGT in coastal sediments: monitoring and biogeochemical study of trace metals and oxyanions DGT在沿海沉积物中的应用:痕量金属和氧离子的监测和生物地球化学研究
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00207
Beichen Lin , Feng Pan
{"title":"Applications of DGT in coastal sediments: monitoring and biogeochemical study of trace metals and oxyanions","authors":"Beichen Lin ,&nbsp;Feng Pan","doi":"10.1016/j.teac.2023.e00207","DOIUrl":"10.1016/j.teac.2023.e00207","url":null,"abstract":"<div><p>Diffusive gradients in thin films (DGT) is a powerful analytical tool that has been widely used to obtain concentration and distribution data of target analytes in waters, soils, and sediments. While many review papers have discussed the development and application of DGT, there has been no comprehensive review specifically focusing on its use in coastal sediments, which are subject to complex and diverse environmental conditions and can be easily affected by anthropogenic activities. Coastal sediments can act as a source or a sink of trace metals and oxyanions to the overlying water, making it essential to use analytical methods with high resolution and selectivity. This paper provides a thorough review of the research applications of DGT in coastal sediments, including nearshore, estuarine, and intertidal sediments. The review also presents a brief introduction to DGT devices and deployment methods in coastal sediment environments and discusses in details the reported cases of DGT application since 2010, which include metal and oxyanion mobilization and interaction, pollutant monitoring and risk assessment, diagenetic processes, as well as the kinetics and mechanism of analyte transfer across the sediment-water interface. Finally, the review discusses the expected future progress of DGT technique.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00207"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47918568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review 纳米材料修饰电极在环境污染物流通电化学传感中的应用综述
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00208
Ali Sahragard , Pakorn Varanusupakul , Manuel Miró
{"title":"Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review","authors":"Ali Sahragard ,&nbsp;Pakorn Varanusupakul ,&nbsp;Manuel Miró","doi":"10.1016/j.teac.2023.e00208","DOIUrl":"10.1016/j.teac.2023.e00208","url":null,"abstract":"<div><p>The current state-of-the-art of nanomaterial-based electrochemical sensors in flow injection (NBES-FI) platforms for in-line determination of environmental pollutants (since 2013 to mid-2023) is herein critically reviewed. The synergistic effects of FI platforms and nanomaterial-based modifiers, such as metal nanoparticles and carbon-based nanomaterials, for minimizing electrode fouling, alleviating overpotential, and boosting the overall figures of merit are discussed in detail. The role of experimental parameters including (i) the electrode nature, shape, design and configuration, (ii) the synthetic routes of (nano)materials, and (iii) the electrochemical detection technique on the analytical performance of NBES-FI is thoroughly evaluated. Current challenges and needs for real-world exploitation of NBES-FI in environmental settings are outlined along with perspectives for the integration of NBES-FI with microextraction approaches and the exploitation of 3D printing technology for fabrication of customized fluidic platforms.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00208"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47579797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights of nanomaterials integrated analytical approaches for detection of plant hormones in agricultural and environmental samples 纳米材料检测农业和环境样品中植物激素的综合分析方法
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00205
Juhi Bhadresh Raval , Vaibhavkumar N. Mehta , Rakesh Kumar Singhal , Hirakendu Basu , Sanjay Jha , Suresh Kumar Kailasa
{"title":"Insights of nanomaterials integrated analytical approaches for detection of plant hormones in agricultural and environmental samples","authors":"Juhi Bhadresh Raval ,&nbsp;Vaibhavkumar N. Mehta ,&nbsp;Rakesh Kumar Singhal ,&nbsp;Hirakendu Basu ,&nbsp;Sanjay Jha ,&nbsp;Suresh Kumar Kailasa","doi":"10.1016/j.teac.2023.e00205","DOIUrl":"10.1016/j.teac.2023.e00205","url":null,"abstract":"<div><p><span>Hormones are an important class of biomolecules as they regulate the physiological responses in the living organisms. Recently, nanomaterials-based biosensors have been widely researched due to their outstanding merits like stabilty, selectivity, biocompatibility, facile synthetic approach, and cost-effectiveness. In this review, we cover in detail the recent advancements of nanomaterials<span> (carbon dots, carbon nanotubes, </span></span>metal nanoparticles<span>, metal oxides, metal-organic frameworks, metal nanoclusters<span> and quantum dots) in electrochemcial, colorimetric and fluorescence sensing of plant hormones. This review also provides a brief outline on the classificaiton of phytohormones and the sample preparation appraoches for the extraction of phytohormones prior to their identification by various analytical techniques. This review will focus on the selected research papers on nanomaterials as electrochemical, colorimetric and fluorescent sensors for the plant hormones detection from the last twelve years (i.e., 2011 −2023). Nanomaterials integrated analytical techniques (electrochemcial, colorimetric and fluorescence) offer to detect plat hormones with lower detection limits (fM to µM and ng/mL to pg/mL). Importantly, nanomaterials integrated analytical strategies have been successfully detected plant hormones with minimal volumes and sample preparations. The various advantages and limitations of techniques have been also overviewed. The challenges and future perspectives of nanomaterials-based electro- and optical sensors for the analysis of plant hormones are discussed in detail.</span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00205"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47589956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface engineering of MXene quantum dots for the designing of optical metal sensors 用于光学金属传感器设计的MXene量子点的表面工程
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-09-01 DOI: 10.1016/j.teac.2023.e00210
Imtiaz Ahmad , Yanuardi Raharjo , Ateeqa Batool , Ayesha Zakir , Hirra Manzoor , Aqsa Arooj , Jaweria Khalid , Nisar Ali , Kashif Rasool
{"title":"Surface engineering of MXene quantum dots for the designing of optical metal sensors","authors":"Imtiaz Ahmad ,&nbsp;Yanuardi Raharjo ,&nbsp;Ateeqa Batool ,&nbsp;Ayesha Zakir ,&nbsp;Hirra Manzoor ,&nbsp;Aqsa Arooj ,&nbsp;Jaweria Khalid ,&nbsp;Nisar Ali ,&nbsp;Kashif Rasool","doi":"10.1016/j.teac.2023.e00210","DOIUrl":"10.1016/j.teac.2023.e00210","url":null,"abstract":"<div><h3>Background</h3><p>One of the newly developed two-dimensional (2D) materials, MXenes Quantum dots (MQDs) has become a hot topic in materials science over the past ten years. Their potential in fluorescent sensing applications has also gained a lot of attention after the recognition of their distinctive features.</p></div><div><h3>Aim of review</h3><p>The review signifies the understanding of the synthesis, mechanism, and surface engineering of MQDs for their application as fluorescence sensors.</p></div><div><h3>Findings</h3><p><span><span>The MQDs are prepared by simple top-bottom, bottom-up, and advanced microwave approaches. The mechanism is based on quenching which involves Forster Resonance Energy Transfer<span> (FRET), Inner Filter Effect (IFE), or Photo Induced Electron Transfer (PET) in a broad range of sensing applications. However, sometimes a new analyte is added to recover the fluorescence quenching. Doping with a </span></span>heteroatom<span> (N, P, S or metal atoms) and co-doping (N-P, N-S, N-, Pt, etc.) has been frequently used to overcome the drawbacks of MQDs such as aggregation, oxidation, and low quantum yield. MQDs modification can be realized by covalent bonding, aryl diazonium </span></span>chemistry<span><span>, or non-covalent interactions. Moreover, surface defects are removed to enhance the </span>Photoluminescence<span><span> Quantum Yield (PLQY) by passivation. However, overcoming the challenges of MQDs synthesis restricted to Ti, detail sensing </span>mechanistic study<span>, and advancement in surface engineering (modification and passivation) could lead to future highly efficient and vast MQDs sensors applications.</span></span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00210"},"PeriodicalIF":11.2,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49343624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the chemistry of ionic liquid mediated carbon dots as sensing probe – A review 离子液体介导的碳点作为传感探针的化学研究进展
IF 11.2 2区 化学
Trends in Environmental Analytical Chemistry Pub Date : 2023-08-25 DOI: 10.1016/j.teac.2023.e00214
Hafiz Muhammad Junaid , Shahid Munir , Madeeha Batool
{"title":"Unraveling the chemistry of ionic liquid mediated carbon dots as sensing probe – A review","authors":"Hafiz Muhammad Junaid ,&nbsp;Shahid Munir ,&nbsp;Madeeha Batool","doi":"10.1016/j.teac.2023.e00214","DOIUrl":"10.1016/j.teac.2023.e00214","url":null,"abstract":"<div><p><span>Ionic liquid<span> mediated carbon dots<span> (IL-CDs) are being emerged as new sensing probe for the detection of various chemical entities. Their unique features i.e. physical, chemical and optical properties along with their eco-friendly nature are the main sources of attraction for researchers. The induction of ionic moieties in addition to their naturally existing surface functionalities such as ―OH, ―COOH, ―NH</span></span></span><sub>2</sub><span> on CDs make them a good option for sensing applications. This review focuses on a systematic literature related to the employment of IL-CDs as sensing probes for various chemical species. Moreover, IL-CDs have been critically evaluated compared to ordinary CDs in terms of structural difference, versatility in mode of sensing, types of entities being sensed and performance efficiency to highlight the spaces which have to address in near future.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"40 ","pages":"Article e00214"},"PeriodicalIF":11.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47956961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信