{"title":"利用薄膜中的扩散梯度 (DGT) 推动环境汞研究:发展、成长与未来","authors":"Christoph Gade , Lenka Mbadugha , Graeme Paton","doi":"10.1016/j.teac.2024.e00230","DOIUrl":null,"url":null,"abstract":"<div><p>An understanding of global environmental pollution requires sensitive high-resolution analytical methods to detect contaminants at trace level concentrations (≤ppb), to accurately assess potential effects associated with chronic low-level exposure. Additionally, the focus of environmental risk assessments has evolved to consider not only total concentrations but also bioavailable fractions. Diffusive gradient in thin-film passive samplers (DGTs) can be deployed in a variety of matrices to accumulate contaminants through diffusion. Due to their simple design, DGTs can be manipulated and adjusted to fit the experimental or monitoring purpose and contaminant of interest. Mercury (Hg) is a ubiquitous trace element of global concern that accumulates in biota and concentrates through the food chain as organic methylmercury. Existing reviews on environmental Hg research mention DGTs as a promising and successful tool to quantify the flux of labile species over a broad range of environmental matrices. This is the first comprehensive review of current literature describing the development and environmental deployment of mercury specific DGTs. Given the multi-facetted nature of this research, this review discusses the impact of DGT configuration and Hg speciation on the interpretation of analytical data and addresses the application of DGT passive samplers in bioavailability studies.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"42 ","pages":"Article e00230"},"PeriodicalIF":11.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214158824000060/pdfft?md5=0e9af11b9a1a8f5fb037a271d7678c7f&pid=1-s2.0-S2214158824000060-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Use of diffusive gradient in thin-films (DGTs) to advance environmental mercury research: Development, growth, and tomorrow\",\"authors\":\"Christoph Gade , Lenka Mbadugha , Graeme Paton\",\"doi\":\"10.1016/j.teac.2024.e00230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An understanding of global environmental pollution requires sensitive high-resolution analytical methods to detect contaminants at trace level concentrations (≤ppb), to accurately assess potential effects associated with chronic low-level exposure. Additionally, the focus of environmental risk assessments has evolved to consider not only total concentrations but also bioavailable fractions. Diffusive gradient in thin-film passive samplers (DGTs) can be deployed in a variety of matrices to accumulate contaminants through diffusion. Due to their simple design, DGTs can be manipulated and adjusted to fit the experimental or monitoring purpose and contaminant of interest. Mercury (Hg) is a ubiquitous trace element of global concern that accumulates in biota and concentrates through the food chain as organic methylmercury. Existing reviews on environmental Hg research mention DGTs as a promising and successful tool to quantify the flux of labile species over a broad range of environmental matrices. This is the first comprehensive review of current literature describing the development and environmental deployment of mercury specific DGTs. Given the multi-facetted nature of this research, this review discusses the impact of DGT configuration and Hg speciation on the interpretation of analytical data and addresses the application of DGT passive samplers in bioavailability studies.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"42 \",\"pages\":\"Article e00230\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214158824000060/pdfft?md5=0e9af11b9a1a8f5fb037a271d7678c7f&pid=1-s2.0-S2214158824000060-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158824000060\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158824000060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Use of diffusive gradient in thin-films (DGTs) to advance environmental mercury research: Development, growth, and tomorrow
An understanding of global environmental pollution requires sensitive high-resolution analytical methods to detect contaminants at trace level concentrations (≤ppb), to accurately assess potential effects associated with chronic low-level exposure. Additionally, the focus of environmental risk assessments has evolved to consider not only total concentrations but also bioavailable fractions. Diffusive gradient in thin-film passive samplers (DGTs) can be deployed in a variety of matrices to accumulate contaminants through diffusion. Due to their simple design, DGTs can be manipulated and adjusted to fit the experimental or monitoring purpose and contaminant of interest. Mercury (Hg) is a ubiquitous trace element of global concern that accumulates in biota and concentrates through the food chain as organic methylmercury. Existing reviews on environmental Hg research mention DGTs as a promising and successful tool to quantify the flux of labile species over a broad range of environmental matrices. This is the first comprehensive review of current literature describing the development and environmental deployment of mercury specific DGTs. Given the multi-facetted nature of this research, this review discusses the impact of DGT configuration and Hg speciation on the interpretation of analytical data and addresses the application of DGT passive samplers in bioavailability studies.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.