Brain Topography最新文献

筛选
英文 中文
On the Relation Between the Interstimulus Intervals and Multi-Muscle nTMS Motor Mapping. 刺激间隔与多肌nTMS运动映射关系的研究。
IF 2.9 3区 医学
Brain Topography Pub Date : 2025-07-30 DOI: 10.1007/s10548-025-01128-9
Anastasiia Asmolova, Anastasiia Sukmanova, Milana Makarova, Pavel Novikov, Vadim Nikulin, Maria Nazarova
{"title":"On the Relation Between the Interstimulus Intervals and Multi-Muscle nTMS Motor Mapping.","authors":"Anastasiia Asmolova, Anastasiia Sukmanova, Milana Makarova, Pavel Novikov, Vadim Nikulin, Maria Nazarova","doi":"10.1007/s10548-025-01128-9","DOIUrl":"10.1007/s10548-025-01128-9","url":null,"abstract":"<p><p>Although the interstimulus interval (ISI) is one of the crucial parameters in the transcranial magnetic stimulation (TMS), the ISI effect on the results of the TMS motor mapping is usually overlooked. This study explored the influence of ISI, ranging from 1.5 to 41 s, on multi-muscle navigated TMS (nTMS) motor mapping results. Twenty-six healthy male volunteers underwent four nTMS motor mapping sessions on two separate days. We mapped the muscles' cortical representations (MCRs) of the five upper limb muscles: abductor pollicis brevis (APB), abductor digiti minimi (ADM), first dorsal interosseous (FDI), extensor digitorum communis (EDC), and biceps brachii (BB). We estimated the relationship between ISIs and trial-to-trial motor evoked potentials (MEPs) amplitudes and MCR areas. In addition, we accounted for the association between the ISI and TMS mapping procedure parameters such as the distance between the successive stimulation points, the number of stimuli in a TMS session, and the stimulus counting number. A weak positive association was observed between: (1) trial-to-trial ISI and MEP amplitude and (2) median ISI and MCR areas. We recommend reporting ISI values in TMS motor mapping studies and monitoring the impact of ISI on MEP amplitudes.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"55"},"PeriodicalIF":2.9,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144746049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Correlates of Inhibitory Control in Children: Evidence Using MRI and fNIRS. 儿童抑制性控制的神经相关因素:MRI和fNIRS的证据。
IF 2.9 3区 医学
Brain Topography Pub Date : 2025-07-26 DOI: 10.1007/s10548-025-01129-8
Leela Shah, Xin Zhou, Marissa Ann DiPiero, Jayse Merle Weaver, Corrina Frye, Steven R Kecskemeti, Ruth Y Litovsky, Andrew L Alexander, Elizabeth M Planalp, Douglas C Dean
{"title":"Neural Correlates of Inhibitory Control in Children: Evidence Using MRI and fNIRS.","authors":"Leela Shah, Xin Zhou, Marissa Ann DiPiero, Jayse Merle Weaver, Corrina Frye, Steven R Kecskemeti, Ruth Y Litovsky, Andrew L Alexander, Elizabeth M Planalp, Douglas C Dean","doi":"10.1007/s10548-025-01129-8","DOIUrl":"10.1007/s10548-025-01129-8","url":null,"abstract":"<p><p>Inhibitory control (IC) develops in stages from infancy through adolescence and is associated with numerous developmental disorders and learning outcomes. This study examined how neural architecture - in particular myelination - underlies brain activation patterns observed during IC tasks in a sample of 28 children aged 4-10 years old. IC was observed using reaction times during go/no-go and flanker IC tasks. Myelination was measured using quantitative longitudinal relaxation rate (R1) mapping obtained from selected white matter regions of interest (ROIs). Brain activation was defined as task-related changes in hemoglobin oxygenation as measured by functional near-infrared spectroscopy (fNIRS) averaged within ROIs. Results indicated that myelination in ROIs was higher in older children and fNIRS activation in frontal channels was significantly and positively associated with go/no-go mean reaction time. Myelination in the corona radiata and superior longitudinal fasciculus was positively associated with frontal fNIRS activation, while myelination was negatively associated with go/no-go and flanker mean reaction times across white matter ROIs. Overall, significance level notably varied across models. Independently of inhibitory control constructs, these regions may be of interest in future structure-function studies across development.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"54"},"PeriodicalIF":2.9,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144719195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Reorganization of Subcortical Network Reflects Sensory-Motor Abilities in Patients after Spinal Cord Injury. 脊髓损伤后皮层下网络的重组反映了患者的感觉运动能力。
IF 2.9 3区 医学
Brain Topography Pub Date : 2025-07-16 DOI: 10.1007/s10548-025-01127-w
Na Li, Meisi Song, Mao Pang, Xiaodan Ma, Weihong Qiu, Zhuang Kang, Yong Yu, Zhaocong Chen, Zulin Dou, Xiquan Hu, Bin Liu, Limin Rong
{"title":"The Reorganization of Subcortical Network Reflects Sensory-Motor Abilities in Patients after Spinal Cord Injury.","authors":"Na Li, Meisi Song, Mao Pang, Xiaodan Ma, Weihong Qiu, Zhuang Kang, Yong Yu, Zhaocong Chen, Zulin Dou, Xiquan Hu, Bin Liu, Limin Rong","doi":"10.1007/s10548-025-01127-w","DOIUrl":"10.1007/s10548-025-01127-w","url":null,"abstract":"<p><p>We explore cerebral reorganization in patients with spinal cord injury (SCI) using structural and functional magnetic resonance imaging (fMRI) to investigate regions relative to the prognosis of sensory-motor ability within SCI patients. Thirty right-handed SCI patients and 30 gender- and age-matched healthy controls (HCs) were included. Gray matter volume (GMV) changes in SCI patients were observed and the amplitude of low-frequency fluctuations (ALFF) values within regions with significant differences in GMV were calculated. These altered gray matter regions were used as regions of interest (ROIs) for functional connectivity (FC) analysis to detect related functional changes. Additionally, the Granger causality analysis (GCA) was used to study alterations in effective connectivity (EC) within the brain. The potential association between all the above MRI values with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) scores was investigated through partial correlation analysis. SCI patients showed reduced GMV in bilateral putamen compared to the HCs. Meanwhile, significant lower FC were found between the bilateral putamen and the right superior parietal gyrus, whereas significant higher FC were found between the right putamen and the bilateral precuneus in patients with SCI. GCA revealed enhanced EC from the left precuneus to the right putamen. The degree of functional alterations with the putamen might hint at the level of sensory-motor function of patients following SCI. When multisensory integration was decreased due to disease, the increased connection between the precuneus and the putamen might serve a role in SCI recovery by increasing visuospatial integration.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"53"},"PeriodicalIF":2.9,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144644201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Chronic Tinnitus Following Personalized, Parcel-guided Accelerated rTMS: Feasibility in a Retrospective Case Series. 个性化、包裹引导加速rTMS后慢性耳鸣的改善:回顾性病例系列的可行性。
IF 2.9 3区 医学
Brain Topography Pub Date : 2025-07-14 DOI: 10.1007/s10548-025-01126-x
Si Jie Tang, Jonas Holle, Nicholas B Dadario, Sol Lim, Marcus Valcarce-Aspegren, Olivia Lesslar, Charles Teo, Michael E Sughrue, Jacky Yeung
{"title":"Improvement of Chronic Tinnitus Following Personalized, Parcel-guided Accelerated rTMS: Feasibility in a Retrospective Case Series.","authors":"Si Jie Tang, Jonas Holle, Nicholas B Dadario, Sol Lim, Marcus Valcarce-Aspegren, Olivia Lesslar, Charles Teo, Michael E Sughrue, Jacky Yeung","doi":"10.1007/s10548-025-01126-x","DOIUrl":"10.1007/s10548-025-01126-x","url":null,"abstract":"<p><p>Increasing evidence suggests that brain areas outside of the auditory pathway may be involved in the development and maintenance of tinnitus. We hypothesized that repetitive transcranial magnetic stimulation (rTMS) to those areas in patients with comorbid psychiatric and neurocognitive disorder may reduce tinnitus distress. This is a case series of patients treated with off-label accelerated continuous or intermittent theta burst rTMS for medically refractory tinnitus. Target selections for each patient were performed using a personalized brain atlas based on resting state functional MRI (rsMRI) that identified regions of anomalous connectivity by comparing resting state functional connectivity to a normal cohort. Nine patients were treated with personalized, parcel-guided rTMS (Sydney, Australia) from 2018 to 2023, inclusive. Four patients had Major Depressive Disorder (MDD) of which three had comorbid anxiety, three patients had traumatic brain injury, and one patient had migraines. All patients had targets identified outside of the auditory network, including central executive network (CEN), default mode network (DMN), and salience network (SN). Clinically significant improvements in tinnitus symptoms were reported in 75% and 100% of patients based on TRQ and THI, respectively. No major adverse safety events occurred. rTMS with target selection using a personalized, agile approach is safe and may provide durable symptomatic relief rTMS with target selection using a personalized, agile approach is safe and may provide durable symptomatic relief for patients with chronic tinnitus, including those with comorbid psychiatric and neurocognitive conditions.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"52"},"PeriodicalIF":2.9,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144627727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BrainNet-GAN: Generative Adversarial Graph Convolutional Network for Functional Brain Network Synthesis from Routine Clinical Brain Structural T1-Weighted Sequence. 基于临床常规脑结构t1加权序列的脑功能网络合成生成对抗图卷积网络。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-06-23 DOI: 10.1007/s10548-025-01125-y
Haiwang Nan, Zhiwei Song, Qiang Zheng
{"title":"BrainNet-GAN: Generative Adversarial Graph Convolutional Network for Functional Brain Network Synthesis from Routine Clinical Brain Structural T1-Weighted Sequence.","authors":"Haiwang Nan, Zhiwei Song, Qiang Zheng","doi":"10.1007/s10548-025-01125-y","DOIUrl":"10.1007/s10548-025-01125-y","url":null,"abstract":"<p><p>Functional brain network (FBN) derived from functional Magnetic Resonance Imaging (fMRI) has promising prospects in clinical research, but fMRI is not a routine acquisition data, which limits its popularity in clinical applications. Therefore, it is imperative to generate FBN based on routine clinical structural MRI brain network. In this study, a BrainNet-GAN model was proposed for generating FBN from radiomics-based morphological brain network (radMBN) derived from routinely acquired T1-weighted image (T1WI). BrainNet-GAN integrated two Multi-Channel Multi-Scale Adaptive (Multi<sup>2</sup>Ada) generators and two (Local_to_Global) discriminators. In the generator, Graph Convolutional Network (GCN) was used inside each channel to aggregate multi-scale information between direct or indirect neighbors of nodes, and the output of each channel was adaptively fused through several sets of learnable coefficients; In the discriminator, Multi-channel GCN was used to aggregate local nodes information, and a feature selection module was designed to establish correlations between feature maps at different channels. Additionally, a Multi-Angle Multi-Constraint (MAMC) loss function was proposed, which could guide the learning process of the model from different aspects. Experiments with 2116 subjects in two publicly available datasets showed that BrainNet-GAN model exhibited promising performance on the task of generating FBN. Meanwhile, the individual-level brain network visualization was displayed with high consistency in generated FBN and target FBN. Further, the Top 10 brain regions identified by four graph-theory analysis metrics also exhibited with consistency. The proposed BrainNet-GAN model demonstrated superior performance in generating FBN based on radMBN, which could facilitate the application of FBN in clinical practice.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"51"},"PeriodicalIF":2.3,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144477968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral and Topological Abnormalities of Resting and Task State EEG in Chinese Children with Developmental Dyslexia. 中国发展性阅读障碍儿童静息和任务状态脑电图的频谱和拓扑异常。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-06-10 DOI: 10.1007/s10548-025-01123-0
Yaqi Yang, Shuting Huo, Jie Wang, Urs Maurer
{"title":"Spectral and Topological Abnormalities of Resting and Task State EEG in Chinese Children with Developmental Dyslexia.","authors":"Yaqi Yang, Shuting Huo, Jie Wang, Urs Maurer","doi":"10.1007/s10548-025-01123-0","DOIUrl":"10.1007/s10548-025-01123-0","url":null,"abstract":"<p><p>Developmental dyslexia (DD) is a common reading disorder with neurological underpinnings; however, it remains unclear whether Chinese children with DD exhibit spectral power or network topology abnormalities. This study investigated spectral power and brain network topology abnormalities using electroencephalography (EEG) during resting states and a one-back Chinese-Korean character task in 85 Hong Kong Chinese children with DD and 51 typically developing peers (ages 7-11). EEG signals were transformed using the Fast Fourier Transform to estimate spectral power. Functional connectivity matrices were derived using the phase-lag index, and network topology was assessed via minimum spanning tree (MST) analysis. The results suggested that children with DD showed reduced alpha power over central, frontal, temporal, parietal, and occipital scalp areas at rest, and over central and frontal areas during the task. MST results revealed decreased beta band integration at rest but increased alpha band integration during the one-back task. Familiar Chinese stimuli elicited greater alpha and beta power and lower beta band integration compared to unfamiliar Korean stimuli. Moreover, resting-state beta band integration correlated positively with reading fluency in children with DD. These findings point to inhibitory control deficits and cortical hyperactivation in Chinese DD, reflected in disrupted large-scale network topology, and highlight the alpha band as a potential biomarker. They also demonstrate that language familiarity modulates neural efficiency and recruits compensatory networks. Overall, the study provides new insights into the neural basis of reading difficulties in Chinese children with DD.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"50"},"PeriodicalIF":2.3,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144259431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apathy in Parkinson's Disease: EEG Microstate Characteristics. 帕金森病的冷漠:脑电图微状态特征。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-06-05 DOI: 10.1007/s10548-025-01124-z
Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu
{"title":"Apathy in Parkinson's Disease: EEG Microstate Characteristics.","authors":"Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu","doi":"10.1007/s10548-025-01124-z","DOIUrl":"10.1007/s10548-025-01124-z","url":null,"abstract":"<p><p>Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"49"},"PeriodicalIF":2.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144227707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay Between Cortical and Neurocardiac Interoceptive Processes and its Association with Self-Reported Interoceptive Sensibility. 皮层和神经心脏内感受过程之间的相互作用及其与自我报告的内感受敏感性的关联。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-06-03 DOI: 10.1007/s10548-025-01122-1
Mariana Oliveira, Márcia da-Silva, Lídia Carvalho, A Ribeiro-Carreira, Ana Rita Pereira, Adriana Sampaio, Joana Coutinho, Alberto J González-Villar
{"title":"Interplay Between Cortical and Neurocardiac Interoceptive Processes and its Association with Self-Reported Interoceptive Sensibility.","authors":"Mariana Oliveira, Márcia da-Silva, Lídia Carvalho, A Ribeiro-Carreira, Ana Rita Pereira, Adriana Sampaio, Joana Coutinho, Alberto J González-Villar","doi":"10.1007/s10548-025-01122-1","DOIUrl":"10.1007/s10548-025-01122-1","url":null,"abstract":"<p><p>Interoception, the process of sensing and interpreting internal bodily signals, plays a crucial role in emotional regulation, decision-making, and overall well-being. This study aimed to investigate the relationship between self-reported interoceptive processes, assessed through the Body Perception Questionnaire (BPQ), and psychophysiological measures of interoception, including cardiac autonomic markers (HF-HRV and RMSSD), cortical processing of cardiac signals (heartbeat-evoked potentials, HEPs), and EEG microstates. We recorded EEG and ECG from 64 healthy volunteers during open-eyed resting state. A positive association was found between the Subdiaphragmatic Reactivity subscale of the BPQ and the coverage of microstate A, a spatial configuration linked to the activation of temporal brain regions, arousal, and sensory processing. No associations were observed between BPQ scores and cardiac measures or HEP amplitudes, suggesting that subjective reports may not align with psychophysiological indices of interoception. Associations were found between HEP amplitudes and microstates A and B, as well as between HRV measures and microstate D, highlighting potential links between autonomic functioning and brain activity during resting state. Although the BPQ is a widely used tool to assess interoceptive sensibility, it may not fully capture the complexity of this construct. These findings provide insight into the complex interplay between self-reported interoception and psychophysiological markers, while emphasizing the need for further research to clarify these relationships and their implications for emotional and cognitive processing.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"48"},"PeriodicalIF":2.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Brain Network Dynamics During Postural Control Task Using EEG Microstates. 利用脑电图微态评估体位控制任务中的脑网络动态。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-06-03 DOI: 10.1007/s10548-025-01119-w
Carmine Gelormini, Lorena Guerrini, Federica Pescaglia, Romain Aubonnet, Halldór Jónsson, Hannes Petersen, Giorgio Di Lorenzo, Paolo Gargiulo
{"title":"Assessing Brain Network Dynamics During Postural Control Task Using EEG Microstates.","authors":"Carmine Gelormini, Lorena Guerrini, Federica Pescaglia, Romain Aubonnet, Halldór Jónsson, Hannes Petersen, Giorgio Di Lorenzo, Paolo Gargiulo","doi":"10.1007/s10548-025-01119-w","DOIUrl":"10.1007/s10548-025-01119-w","url":null,"abstract":"<p><p>The ability to maintain our body's balance and stability in space is crucial for performing daily activities. Effective postural control (PC) strategies rely on integrating visual, vestibular, and proprioceptive sensory inputs. While neuroimaging has revealed key areas involved in PC-including brainstem, cerebellum, and cortical networks-the rapid neural mechanisms underlying dynamic postural tasks remain less understood. Therefore, we used EEG microstate analysis within the BioVRSea experiment to explore the temporal brain dynamics that support PC. This complex paradigm simulates maintaining an upright posture on a moving platform, integrated with virtual reality (VR), to replicate the sensation of balancing on a boat. Data were acquired from 266 healthy subjects using a 64-channel EEG system. Using a modified k-means method, five EEG microstate maps were identified to best model the paradigm. Differences in each microstate maps feature (occurrence, duration, and coverage) between experimental phases were analyzed using a linear mixed model, revealing significant differences between microstates within the experiment phases. The temporal parameters of microstate C showed significantly higher levels in all experimental phases compared to other microstate maps, whereas microstate B displayed an opposite pattern, consistently showing lower levels. This study marks the first attempt to use microstate analysis during a dynamic task, demonstrating the decisive role of microstate C and, conversely, microstate B in differentiating the PC phases. These results demonstrate the utility of microstate technique in studying temporal brain dynamics during PC, with potential applications in the early detection of neurodegenerative diseases.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"47"},"PeriodicalIF":2.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Sarcasm's Neural Correlates Through a Novel fMRI Spanish Paradigm. 通过一种新的功能磁共振成像西班牙语范式理解讽刺的神经关联。
IF 2.3 3区 医学
Brain Topography Pub Date : 2025-05-31 DOI: 10.1007/s10548-025-01118-x
Nicolás Vassolo, Pablo Joaquín Ocampo, Bautista Elizalde Acevedo, Sofía Bosch, Mariana Bendersky, Lucía Alba-Ferrara
{"title":"Understanding Sarcasm's Neural Correlates Through a Novel fMRI Spanish Paradigm.","authors":"Nicolás Vassolo, Pablo Joaquín Ocampo, Bautista Elizalde Acevedo, Sofía Bosch, Mariana Bendersky, Lucía Alba-Ferrara","doi":"10.1007/s10548-025-01118-x","DOIUrl":"10.1007/s10548-025-01118-x","url":null,"abstract":"<p><p>There is growing interest in the neural network of pragmatic language and its potential overlap with the Theory of Mind (ToM) network. However, no Spanish-adapted fMRI tasks were used for studying sarcasm, the subtype of pragmatic language most related to ToM. Furthermore, stimuli used in prior studies often impose high cognitive demands, confounding its sarcasm brain representation with the executive network. We investigate the neural correlates of sarcasm in Spanish using a novel experimental paradigm designed to minimize cognitive load and enhance ecological validity. Eighteen healthy, right-handed participants underwent a 3T fMRI session with a sarcasm comprehension task. Brain activations analysed with SPM12 were calculated for sarcasm vs. literal contrast. Sarcasm activated the left temporo-parietal junction, Medial Prefrontal Cortex (BA 10), Left Inferior Frontal Gyrus (BA 45), Left Medial and Superior Temporal Gyrus (BA 21 & 22), and Left Temporal Pole (BA 38). Sarcasm comprehension involves an extensive fronto-temporal-parietal network, with prominent activation of ToM-related areas. These findings suggest an overlap between sarcasm and ToM networks, emphasizing the role of the medial prefrontal cortex in pragmatic language, the left inferior frontal gyrus in semantic integration, and the role of a left-lateralized frontotemporal network for sarcasm processing.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"46"},"PeriodicalIF":2.3,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144192485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信