Brain TopographyPub Date : 2024-11-01Epub Date: 2024-06-01DOI: 10.1007/s10548-024-01060-4
Ri-Bo Chen, Xiao-Tong Li, Xin Huang
{"title":"Topological Organization of the Brain Network in Patients with Primary Angle-closure Glaucoma Through Graph Theory Analysis.","authors":"Ri-Bo Chen, Xiao-Tong Li, Xin Huang","doi":"10.1007/s10548-024-01060-4","DOIUrl":"10.1007/s10548-024-01060-4","url":null,"abstract":"<p><p>Primary angle-closure glaucoma (PACG) is a sight-threatening eye condition that leads to irreversible blindness. While past neuroimaging research has identified abnormal brain function in PACG patients, the relationship between PACG and alterations in brain functional networks has yet to be explored. This study seeks to examine the influence of PACG on brain networks, aiming to advance knowledge of its neurobiological processes for better diagnostic and therapeutic approaches utilizing graph theory analysis. A cohort of 44 primary angle-closure glaucoma (PACG) patients and 44 healthy controls participated in this study. Functional brain networks were constructed using fMRI data and the Automated Anatomical Labeling 90 template. Subsequently, graph theory analysis was employed to evaluate global metrics, nodal metrics, modular organization, and network-based statistics (NBS), enabling a comparative analysis between PACG patients and the control group. The analysis of global metrics, including small-worldness and network efficiency, did not exhibit significant differences between the two groups. However, PACG patients displayed elevated nodal metrics, such as centrality and efficiency, in the left frontal superior medial, right frontal superior medial, and right posterior central brain regions, along with reduced values in the right temporal superior gyrus region compared to healthy controls. Furthermore, Module 5 showed notable disparities in intra-module connectivity, while Module 1 demonstrated substantial differences in inter-module connectivity with both Module 7 and Module 8. Noteworthy, the NBS analysis unveiled a significantly altered network when comparing the PACG and healthy control groups. The study proposes that PACG patients demonstrate variations in nodal metrics and modularity within functional brain networks, particularly affecting the prefrontal, occipital, and temporal lobes, along with cerebellar regions. However, an analysis of global metrics suggests that the overall connectivity patterns of the entire brain network remain unaltered in PACG patients. These results have the potential to serve as early diagnostic and differential markers for PACG, and interventions focusing on brain regions with high degree centrality and nodal efficiency could aid in optimizing therapeutic approaches.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1171-1185"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-07-03DOI: 10.1007/s10548-024-01065-z
Yana Criel, Emma Depuydt, Marijke Miatton, Patrick Santens, Pieter van Mierlo, Miet De Letter
{"title":"Cortical Generators and Connections Underlying Phoneme Perception: A Mismatch Negativity and P300 Investigation.","authors":"Yana Criel, Emma Depuydt, Marijke Miatton, Patrick Santens, Pieter van Mierlo, Miet De Letter","doi":"10.1007/s10548-024-01065-z","DOIUrl":"10.1007/s10548-024-01065-z","url":null,"abstract":"<p><p>The cortical generators of the pure tone MMN and P300 have been thoroughly studied. Their nature and interaction with respect to phoneme perception, however, is poorly understood. Accordingly, the cortical sources and functional connections that underlie the MMN and P300 in relation to passive and active speech sound perception were identified. An inattentive and attentive phonemic oddball paradigm, eliciting a MMN and P300 respectively, were administered in 60 healthy adults during simultaneous high-density EEG recording. For both the MMN and P300, eLORETA source reconstruction was performed. The maximal cross-correlation was calculated between ROI-pairs to investigate inter-regional functional connectivity specific to passive and active deviant processing. MMN activation clusters were identified in the temporal (insula, superior temporal gyrus and temporal pole), frontal (rostral middle frontal and pars opercularis) and parietal (postcentral and supramarginal gyrus) cortex. Passive discrimination of deviant phonemes was aided by a network connecting right temporoparietal cortices to left frontal areas. For the P300, clusters with significantly higher activity were found in the frontal (caudal middle frontal and precentral), parietal (precuneus) and cingulate (posterior and isthmus) cortex. Significant intra- and interhemispheric connections between parietal, cingulate and occipital regions constituted the network governing active phonemic target detection. A predominantly bilateral network was found to underly both the MMN and P300. While passive phoneme discrimination is aided by a fronto-temporo-parietal network, active categorization calls on a network entailing fronto-parieto-cingulate cortices. Neural processing of phonemic contrasts, as reflected by the MMN and P300, does not appear to show pronounced lateralization to the language-dominant hemisphere.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1089-1117"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-07-17DOI: 10.1007/s10548-024-01067-x
Na Li, Jingqi Yang, Changquan Long, Xu Lei
{"title":"Test-Retest Reliability of EEG Aperiodic Components in Resting and Mental Task States.","authors":"Na Li, Jingqi Yang, Changquan Long, Xu Lei","doi":"10.1007/s10548-024-01067-x","DOIUrl":"10.1007/s10548-024-01067-x","url":null,"abstract":"<p><p>Aperiodic activity is derived from the electroencephalography (EEG) power spectrum and reflects changes in the slope and shifts of the broadband spectrum. Studies have shown inconsistent test-retest reliability of the aperiodic components. This study systematically measured how the test-retest reliability of the aperiodic components was affected by data duration (1, 2, 3, 4, and 5 min), states (resting with eyes closed, resting with eyes open, performing mental arithmetic, recalling the events of the day, and mentally singing songs), and methods (the Fitting Oscillations and One-Over-F (FOOOF) and Linear Mixed-Effects Regression (LMER)) at both short (90-min) and long (one-month) intervals. The results showed that aperiodic components had fair, good, or excellent test-retest reliability (ranging from 0.53 to 0.91) at both short and long intervals. It is recommended that better reliability of the aperiodic components be obtained using data durations longer than 3 min, the resting state with eyes closed, the mental arithmetic task state, and the LMER method.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"961-971"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-22DOI: 10.1007/s10548-024-01084-w
Yulia Novitskaya, Andreas Schulze-Bonhage, Olivier David, Matthias Dümpelmann
{"title":"Intracranial EEG-Based Directed Functional Connectivity in Alpha to Gamma Frequency Range Reflects Local Circuits of the Human Mesiotemporal Network.","authors":"Yulia Novitskaya, Andreas Schulze-Bonhage, Olivier David, Matthias Dümpelmann","doi":"10.1007/s10548-024-01084-w","DOIUrl":"10.1007/s10548-024-01084-w","url":null,"abstract":"<p><p>To date, it is largely unknown how frequency range of neural oscillations measured with EEG is related to functional connectivity. To address this question, we investigated frequency-dependent directed functional connectivity among the structures of mesial and anterior temporal network including amygdala, hippocampus, temporal pole and parahippocampal gyrus in the living human brain. Intracranial EEG recording was obtained from 19 consecutive epilepsy patients with normal anterior mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes. We assessed intratemporal bidirectional functional connectivity using several causality measures such as Granger causality (GC), directed transfer function (DTF) and partial directed coherence (PDC) in a frequency-specific way. In order to verify the obtained results, we compared the spontaneous functional networks with intratemporal effective connectivity evaluated by means of SPES (single pulse electrical stimulation) method. The overlap with the evoked network was found for the functional connectivity assessed by the GC method, most prominent in the higher frequency bands (alpha, beta and low gamma), yet vanishing in the lower frequencies. Functional connectivity assessed by means of DTF and PCD obtained a similar directionality pattern with the exception of connectivity between hippocampus and parahippocampal gyrus which showed opposite directionality of predominant information flow. Whereas previous connectivity studies reported significant divergence between spontaneous and evoked networks, our data show the role of frequency bands for the consistency of functional and evoked intratemporal directed connectivity. This has implications for the suitability of functional connectivity methods in characterizing local brain circuits.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"10"},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Late Nights Influence Brain Cortical Structures: Distinct Neuroanatomical Measures Associated With Late Chronotype in Young Adults.","authors":"Zhenliang Yang, Bingyang Wang, Cheng Xu, Jing Xu, Hui Xu","doi":"10.1007/s10548-024-01085-9","DOIUrl":"https://doi.org/10.1007/s10548-024-01085-9","url":null,"abstract":"<p><p>Chronotype is an inherent physiological trait reflecting an individual's subjective preference for their sleep awakening time, exerting a substantial influence on both physical and mental well-being. While existing research has established a close relationship between chronotype and individual brain structure, prior studies have predominantly focused on individual measurements of brain structural scales, thereby limiting the exploration of the underlying mechanisms of structural changes. This study seeks to validate previous research findings and enhance our understanding of the correlation between circadian rhythm preference and diverse cortical indicators in healthy young individuals. Magnetic resonance imaging (MRI) scans and chronotype assessments were conducted once for all participants, comprising 49 late chronotype (LC) young adults and 49 matched early chronotype young adults. The Chronotype Questionnaire was utilized to assess morningness and eveningness preferences. Surface-based analysis of structural MRI data revealed that LC young adults exhibited thinner cortical thickness of left pars orbitalis and lower cortical mean curve of right paracentral gyrus. Overall, this study represents a significant advancement in elucidating the connection between brain structure and function within the context of chronotypes.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"9"},"PeriodicalIF":2.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-14DOI: 10.1007/s10548-024-01086-8
Lindsey Power, Timothy Bardouille, Kristin M Ikeda, Antonina Omisade
{"title":"Validation of On-Head OPM MEG for Language Laterality Assessment.","authors":"Lindsey Power, Timothy Bardouille, Kristin M Ikeda, Antonina Omisade","doi":"10.1007/s10548-024-01086-8","DOIUrl":"https://doi.org/10.1007/s10548-024-01086-8","url":null,"abstract":"<p><p>Pre-surgical localization of language function in the brain is critical for patients with medically intractable epilepsy. MEG has emerged as a valuable clinical tool for localizing language areas in clinical populations, however, it is limited for widespread application due to the low availability of the system. Recent advances in optically pumped magnetometer (OPM) systems account for some of the limitations of traditional MEG and have been shown to have a similar signal-to-noise ratio. However, the novelty of these systems means that they have only been tested for limited sensory and motor applications. In this work, we aim to validate a novel on-head OPM MEG procedure for lateralizing language processes. OPM recordings, using a soft cap with flexible sensor placement, were collected from 19 healthy, right-handed controls during an auditory word recognition task. The resulting evoked fields were assessed for hemispheric laterality of the response. Principal component analysis (PCA) of the grand average language response indicated that the first two principal components were lateralized to the left hemisphere. The PCA also revealed that all participants had evoked topographies that closely resembled the average left-lateralized response. Left-lateralized responses were consistent with what is expected for a group of healthy right-handed individuals. These findings demonstrate that language-related evoked fields can be elucidated from on-head OPM MEG recordings in a group of healthy adult participants. In the future, on-head OPM MEG and the associated lateralization methods should be validated in patient populations as they may have utility in the pre-surgical mapping of language functions in patients with epilepsy.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"8"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-13DOI: 10.1007/s10548-024-01076-w
Osama Ejaz, Muhammad Abul Hasan, Faryal Raees, Maham Hammad, Saad Ahmed Qazi
{"title":"Assessing the Effectiveness of Audio-Visual vs. Visual Neurofeedback for Attention Enhancement: A Pilot Study with Neurological, Behavioural, and Neuropsychological Measures.","authors":"Osama Ejaz, Muhammad Abul Hasan, Faryal Raees, Maham Hammad, Saad Ahmed Qazi","doi":"10.1007/s10548-024-01076-w","DOIUrl":"https://doi.org/10.1007/s10548-024-01076-w","url":null,"abstract":"<p><p>Electroencephalogram (EEG) based Neurofeedback training has gained traction as a practical method for enhancing executive functions, particularly attention, among healthy individuals. The neurofeedback protocols based on EEG channel locations, frequency bands, or EEG features has been tested. However, the improvement in attention was not measured by comparing different feedback stimulus types. We believe that multisensory nature feedback even with few training sessions may induce strong effect. Therefore, this study compares the effect of audio-visual and visual feedback stimuli for attention enhancement utilizing neurophysiological, behavioural and neuropsychological measures. Total 21 subjects were recruited, undergoing six alternate days of neurofeedback training sessions to upregulate EEG beta power of frontocentral (FC5). Dwell time, fractional occupancy and transition probability were also estimated from the EEG beta power. Audiovisual group (G1) as compared to visual group (G2) demonstrate a significant increase of global EEG beta activity alongside improved dwell time (t = 2.76, p = 0.003), fractional occupancy (t = 1.73, p = 0.042) and transition probability (t = 2.46, p = 0.008) over the course of six neurofeedback training sessions. Similarly, the group (G1) shows higher scores (t = 2.13, p = 0.032) and faster reaction times (t = 2.22, p = 0.028) in Stroop task, along with increased score in Mindfulness Attention Awareness Scale (MAAS-15) questionnaire (t = 2.306, p = 0.012). Audiovisual neurofeedback may enhance training effectiveness, potentially achieving the same outcomes in fewer sessions compared to visual-only feedback. However, sufficient training days are essential for effect consolidation. This highlights the feasibility of completing neurofeedback training, a significant challenge in practice.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"7"},"PeriodicalIF":2.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-13DOI: 10.1007/s10548-024-01077-9
Ke Zhang, Jianhui Shen, Tangyi Liu, Huayuan Yang
{"title":"Modulation of Brain Activities in Healthy Individuals by Acupuncture at Quchi (LI11).","authors":"Ke Zhang, Jianhui Shen, Tangyi Liu, Huayuan Yang","doi":"10.1007/s10548-024-01077-9","DOIUrl":"https://doi.org/10.1007/s10548-024-01077-9","url":null,"abstract":"<p><p>This research investigated the modulation of acupuncture at Quchi (LI11) on the brain activities in healthy individuals. Sub-bands power and EEG microstate analysis were carried out at pre-acupuncture, acupuncture, needle retaining and post-acupuncture periods in both the acupuncture group (n = 16) and control group (n = 18). Four microstate classes (A-D) were derived from the clustering procedure. Regression analysis was conducted, together with a two-way repeated measures ANOVA, which was then followed by Bonferroni correction. In the acupuncture group, we found the beta power during the acupuncture periods was significantly reduced. The channel-by-channel analysis revealed that acupuncture at LI11 mainly altered the power of delta, theta, and alpha waves in specific brain regions. The delta power increased predominantly in parietal, occipital, and central lobes, while theta and alpha power decreased predominantly in temporal, frontal, parietal, and occipital lobes. During the acupuncture period, participants in the acupuncture group showed a significant increase in both duration and contribution of microstate A, as well as the bidirectional transition probabilities A and B/D. Microstate analysis showed that acupuncture at LI11 significantly enhances the activity of microstate A and potentially strengthens the functional connectivity between the auditory network and either the visual network or the dorsal attention network. These correlational results indicate that acupuncture at LI11 mainly affects activities of the frontal, temporal, parietal, and occipital lobes. These findings highlight the potential of microstate as neuroimaging evidence and a specific index for elucidating the neuromodulatory effects of acupuncture at LI11.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"5"},"PeriodicalIF":2.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-13DOI: 10.1007/s10548-024-01079-7
Yazdan Choghazardi, Hossein Faghirnavaz, Masoomeh Fooladi, Hamid Sharini, Mehdi Sobhani, Habibolah Khazaie, Mehdi Khodamoradi, Shahrokh Naseri
{"title":"Investigate Effects of Music Therapy on Functional Connectivity in Papez Circuit of Breast Cancer Patients Using fMRI.","authors":"Yazdan Choghazardi, Hossein Faghirnavaz, Masoomeh Fooladi, Hamid Sharini, Mehdi Sobhani, Habibolah Khazaie, Mehdi Khodamoradi, Shahrokh Naseri","doi":"10.1007/s10548-024-01079-7","DOIUrl":"https://doi.org/10.1007/s10548-024-01079-7","url":null,"abstract":"<p><p>The aim of this study is to investigate activity and functional connectivity (FC) of Papez circuit networks associated with music processing using functional magnetic resonance imaging (fMRI) in depressed breast cancer patients. Twenty-three breast cancer patients listened to four different Iranian/Persian music paradigms during the resting-state fMRI scanning session: negative stimulation of traditional music, negative stimulation of pop music, positive stimulation of traditional music and positive stimulation of pop music. The amplitude of low-frequency fluctuation (ALFF) was used to evaluate the local characteristics of spontaneous brain activity. FC maps were created using multivariate ROI-to-ROI connectivity (mRRC) and Papez circuit-based regions of interest (ROIs) selection. We found that music increases FC within various brain networks which are involved in memory, emotion, and cognitive function, including the limbic system, the default mode network (DMN), salience network (SN), and central executive network (CEN). Moreover, it seems that the traditional types (both positive and negative) of Iranian music may be more effective to affect brain activity in the patients with breast cancer, than the Iranian pop music. These findings demonstrate that music therapy, as an effective and easily applicable approach, supports the neuropsychological recovery and can contribute to standard treatment protocols in patients with breast cancer.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"6"},"PeriodicalIF":2.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-10-04DOI: 10.1007/s10548-024-01078-8
Marjorie Metzger, Stefan Dukic, Roisin McMackin, Eileen Giglia, Matthew Mitchell, Saroj Bista, Emmet Costello, Colm Peelo, Yasmine Tadjine, Vladyslav Sirenko, Lara McManus, Teresa Buxo, Antonio Fasano, Rangariroyashe Chipika, Marta Pinto-Grau, Christina Schuster, Mark Heverin, Amina Coffey, Michael Broderick, Parameswaran M Iyer, Kieran Mohr, Brighid Gavin, Niall Pender, Peter Bede, Muthuraman Muthuraman, Orla Hardiman, Bahman Nasseroleslami
{"title":"Distinct Longitudinal Changes in EEG Measures Reflecting Functional Network Disruption in ALS Cognitive Phenotypes.","authors":"Marjorie Metzger, Stefan Dukic, Roisin McMackin, Eileen Giglia, Matthew Mitchell, Saroj Bista, Emmet Costello, Colm Peelo, Yasmine Tadjine, Vladyslav Sirenko, Lara McManus, Teresa Buxo, Antonio Fasano, Rangariroyashe Chipika, Marta Pinto-Grau, Christina Schuster, Mark Heverin, Amina Coffey, Michael Broderick, Parameswaran M Iyer, Kieran Mohr, Brighid Gavin, Niall Pender, Peter Bede, Muthuraman Muthuraman, Orla Hardiman, Bahman Nasseroleslami","doi":"10.1007/s10548-024-01078-8","DOIUrl":"10.1007/s10548-024-01078-8","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is characterised primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. We have shown previously that resting-state EEG captures dysfunction in motor and cognitive networks in ALS. However, the longitudinal development of these dysfunctional patterns, especially in networks linked with cognitive-behavioural functions, remains unclear. Longitudinal studies on non-motor changes in ALS are essential to further develop our understanding of disease progression, improve care and enhance the evaluation of new treatments. To address this gap, we examined 124 ALS individuals with 128-channel resting-state EEG recordings, categorised by cognitive impairment (ALSci, n = 25), behavioural impairment (ALSbi, n = 58), or non-impaired (ALSncbi, n = 53), with 12 participants meeting the criteria for both ALSci and ALSbi. Using linear mixed-effects models, we characterised the general and phenotype-specific longitudinal changes in brain network, and their association with cognitive performance, behaviour changes, fine motor symptoms, and survival. Our findings revealed a significant decline in [Formula: see text]-band spectral power over time in the temporal region along with increased [Formula: see text]-band power in the fronto-temporal region in the ALS group. ALSncbi participants showed widespread β-band synchrony decrease, while ALSci participants exhibited increased co-modulation correlated with verbal fluency decline. Longitudinal network-level changes were specific of ALS subgroups and correlated with motor, cognitive, and behavioural decline, as well as with survival. Spectral EEG measures can longitudinally track abnormal network patterns, serving as a candidate stratification tool for clinical trials and personalised treatments in ALS.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"3"},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}