Brain TopographyPub Date : 2024-11-01Epub Date: 2024-08-08DOI: 10.1007/s10548-024-01073-z
Christian Valt, Angelantonio Tavella, Cristina Berchio, Dylan Seebold, Leonardo Sportelli, Antonio Rampino, Dean F Salisbury, Alessandro Bertolino, Giulio Pergola
{"title":"MEG Microstates: An Investigation of Underlying Brain Sources and Potential Neurophysiological Processes.","authors":"Christian Valt, Angelantonio Tavella, Cristina Berchio, Dylan Seebold, Leonardo Sportelli, Antonio Rampino, Dean F Salisbury, Alessandro Bertolino, Giulio Pergola","doi":"10.1007/s10548-024-01073-z","DOIUrl":"10.1007/s10548-024-01073-z","url":null,"abstract":"<p><p>Microstates are transient scalp configurations of brain activity measured by electroencephalography (EEG). The application of microstate analysis in magnetoencephalography (MEG) data remains challenging. In one MEG dataset (N = 113), we aimed to identify MEG microstates at rest, explore their brain sources, and relate them to changes in brain activity during open-eyes (ROE) or closed-eyes resting state (RCE) and an auditory Mismatch Negativity (MMN) task. In another dataset of simultaneously recorded EEG-MEG data (N = 21), we investigated the association between MEG and EEG microstates. Six MEG microstates (mMS) provided the best clustering of resting-state activity, each linked to different brain sources: mMS 1-2: left/right occipito-parietal; mMS 3: fronto-temporal; mMS 4: centro-medial; mMS 5-6: left/right fronto-parietal. Increases in occipital alpha power in RCE relative to ROE correlated with greater mMS 1-2 time coverage (τ<sub>b</sub>s < 0.20, ps > .002), while the lateralization of deviance detection in MMN was associated with mMS 5-6 time coverage (τ<sub>b</sub>s < 0.16, ps > .012). No temporal correlation was found between EEG and MEG microstates (ps > .05), despite some overlap in brain sources and global explained variance between mMS 2-3 and EEG microstates B-C (rs > 0.60, ps < .002). Hence, the MEG signal can be decomposed into microstates, but mMS brain activity clustering captures phenomena different from EEG microstates. Source reconstruction and task-related modulations link mMS to large-scale networks and localized activities. Thus, mMSs offer insights into brain dynamics and task-specific processes, complementing EEG microstates in studying physiological and dysfunctional brain activity.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"993-1009"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of Methamphetamine Abusers Can Be Supported by EEG-Based Wavelet Transform and BiLSTM Networks.","authors":"Hui Zhou, Jiaqi Zhang, Junfeng Gao, Xuanwei Zeng, Xiangde Min, Huimiao Zhan, Hua Zheng, Huaifei Hu, Yong Yang, Shuguang Wei","doi":"10.1007/s10548-024-01062-2","DOIUrl":"10.1007/s10548-024-01062-2","url":null,"abstract":"<p><p>Methamphetamine (MA) is a neurological drug, which is harmful to the overall brain cognitive function when abused. Based on this property of MA, people can be divided into those with MA abuse and healthy people. However, few studies to date have investigated automatic detection of MA abusers based on the neural activity. For this reason, the purpose of this research was to investigate the difference in the neural activity between MA abusers and healthy persons and accordingly discriminate MA abusers. First, we performed event-related potential (ERP) analysis to determine the time range of P300. Then, the wavelet coefficients of the P300 component were extracted as the main features, along with the time and frequency domain features within the selected P300 range to classify. To optimize the feature set, F_score was used to remove features below the average score. Finally, a Bidirectional Long Short-term Memory (BiLSTM) network was performed for classification. The experimental result showed that the detection accuracy of BiLSTM could reach 83.85%. In conclusion, the P300 component of EEG signals of MA abusers is different from that in normal persons. Based on this difference, this study proposes a novel way for the prevention and diagnosis of MA abuse.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1217-1231"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-07-23DOI: 10.1007/s10548-024-01070-2
Guangting Mai, Zhizhao Jiang, Xinran Wang, Ilias Tachtsidis, Peter Howell
{"title":"Neuroplasticity of Speech-in-Noise Processing in Older Adults Assessed by Functional Near-Infrared Spectroscopy (fNIRS).","authors":"Guangting Mai, Zhizhao Jiang, Xinran Wang, Ilias Tachtsidis, Peter Howell","doi":"10.1007/s10548-024-01070-2","DOIUrl":"10.1007/s10548-024-01070-2","url":null,"abstract":"<p><p>Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1139-1157"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-06-20DOI: 10.1007/s10548-024-01064-0
Sandra Doval, David López-Sanz, Ricardo Bruña, Pablo Cuesta, Luis Antón-Toro, Ignacio Taguas, Lucía Torres-Simón, Brenda Chino, Fernando Maestú
{"title":"When Maturation is Not Linear: Brain Oscillatory Activity in the Process of Aging as Measured by Electrophysiology.","authors":"Sandra Doval, David López-Sanz, Ricardo Bruña, Pablo Cuesta, Luis Antón-Toro, Ignacio Taguas, Lucía Torres-Simón, Brenda Chino, Fernando Maestú","doi":"10.1007/s10548-024-01064-0","DOIUrl":"10.1007/s10548-024-01064-0","url":null,"abstract":"<p><p>Changes in brain oscillatory activity are commonly used as biomarkers both in cognitive neuroscience and in neuropsychiatric conditions. However, little is known about how its profile changes across maturation. Here we use regression models to characterize magnetoencephalography power changes within classical frequency bands in a sample of 792 healthy participants, covering the range 13 to 80 years old. Our findings unveil complex, non-linear power trajectories that defy the traditional linear paradigm, with notable cortical region variations. Interestingly, slow wave activity increases correlate with improved cognitive performance throughout life and larger gray matter volume in the elderly. Conversely, fast wave activity diminishes in adulthood. Elevated low-frequency activity during aging, traditionally seen as compensatory, may also signify neural deterioration. This dual interpretation, highlighted by our study, reveals the intricate dynamics between brain oscillations, cognitive performance, and aging. It advances our understanding of neurodevelopment and aging by emphasizing the regional specificity and complexity of brain rhythm changes, with implications for cognitive and structural integrity.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1068-1088"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-06-14DOI: 10.1007/s10548-024-01061-3
Liang Huang, Fangyuan Du, Wenxin Huang, Hanlin Ren, Wenzhen Qiu, Jiayi Zhang, Yiwen Wang
{"title":"Three-stage Dynamic Brain-cognitive Model of Understanding Action Intention Displayed by Human Body Movements.","authors":"Liang Huang, Fangyuan Du, Wenxin Huang, Hanlin Ren, Wenzhen Qiu, Jiayi Zhang, Yiwen Wang","doi":"10.1007/s10548-024-01061-3","DOIUrl":"10.1007/s10548-024-01061-3","url":null,"abstract":"<p><p>The ability to comprehend the intention conveyed through human body movements is crucial for effective interpersonal interactions. If people can't understand the intention behind other individuals' isolated or interactive actions, their actions will become meaningless. Psychologists have investigated the cognitive processes and neural representations involved in understanding action intention, yet a cohesive theoretical explanation remains elusive. Hence, we mainly review existing literature related to neural correlates of action intention, and primarily propose a putative Three-stage Dynamic Brain-cognitive Model of understanding action intention, which involves body perception, action identification and intention understanding. Specifically, at the first stage, body parts/shapes are processed by those brain regions such as extrastriate and fusiform body areas; During the second stage, differentiating observed actions relies on configuring relationships between body parts, facilitated by the activation of the Mirror Neuron System; The last stage involves identifying various intention categories, utilizing the Mentalizing System for recruitment, and different activation patterns concerning the nature of the intentions participants dealing with. Finally, we delves into the clinical practice, like intervention training based on a theoretical model for individuals with autism spectrum disorders who encounter difficulties in interpersonal communication.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1055-1067"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-07-23DOI: 10.1007/s10548-024-01068-w
James Siklos-Whillans, Roxane J Itier
{"title":"Effects of Inversion and Fixation Location on the Processing of Face and House Stimuli - A Mass Univariate Analysis.","authors":"James Siklos-Whillans, Roxane J Itier","doi":"10.1007/s10548-024-01068-w","DOIUrl":"10.1007/s10548-024-01068-w","url":null,"abstract":"<p><p>Most Event Related Potential studies investigating the time course of visual processing have focused mainly on the N170 component. Stimulus orientation affects the N170 amplitude for faces but not for objects, a finding interpreted as reflecting holistic/configural processing for faces and featural processing for objects. Furthermore, while recent studies suggest where on the face people fixate impacts the N170, fixation location effects have not been investigated in objects. A data-driven mass univariate analysis (all time points and electrodes) was used to investigate the time course of inversion and fixation location effects on the neural processing of faces and houses. Strong and widespread orientation effects were found for both faces and houses, from 100-350ms post-stimulus onset, including P1 and N170 components, and later, a finding arguing against a lack of holistic processing for houses. While no clear fixation effect was found for houses, fixation location strongly impacted face processing early, reflecting retinotopic mapping around the C2 and P1 components, and during the N170-P2 interval. Face inversion effects were also largest for nasion fixation around 120ms. The results support the view that facial feature integration (1) depends on which feature is being fixated and where the other features are situated in the visual field, (2) occurs maximally during the P1-N170 interval when fixation is on the nasion and (3) continues past 200ms, suggesting the N170 peak, where weak effects were found, might be an inflexion point between processes rather than the end of a feature integration into a whole process.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"972-992"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-06-07DOI: 10.1007/s10548-024-01053-3
Sara Baldini, Arianna Sartori, Lucrezia Rossi, Anna Favero, Fulvio Pasquin, Alessandro Dinoto, Alessio Bratina, Antonio Bosco, Paolo Manganotti
{"title":"Fatigue in Multiple Sclerosis: A Resting-State EEG Microstate Study.","authors":"Sara Baldini, Arianna Sartori, Lucrezia Rossi, Anna Favero, Fulvio Pasquin, Alessandro Dinoto, Alessio Bratina, Antonio Bosco, Paolo Manganotti","doi":"10.1007/s10548-024-01053-3","DOIUrl":"10.1007/s10548-024-01053-3","url":null,"abstract":"<p><p>Fatigue affects approximately 80% of people with Multiple Sclerosis (PwMS) and can impact several domains of daily life. However, the neural underpinnings of fatigue in MS are still not completely clear. The aim of our study was to investigate the spontaneous large-scale networks functioning associated with fatigue in PwMS using the EEG microstate approach with a spectral decomposition. Forty-three relapsing-remitting MS patients and twenty-four healthy controls (HCs) were recruited. All participants underwent an administration of Modified Fatigue Impact scale (MFIS) and a 15-min resting-state high-density EEG recording. We compared the microstates of healthy subjects, fatigued (F-MS) and non-fatigued (nF-MS) patients with MS; correlations with clinical and behavioral fatigue scores were also analyzed. Microstates analysis showed six templates across groups and frequencies. We found that in the F-MS emerged a significant decrease of microstate F, associated to the salience network, in the broadband and in the beta band. Moreover, the microstate B, associated to the visual network, showed a significant increase in fatigued patients than healthy subjects in broadband and beta bands. The multiple linear regression showed that the high cognitive fatigue was predicted by both an increase and decrease, respectively, in delta band microstate B and beta band microstate F. On the other hand, higher physical fatigue was predicted with lower occurrence microstate F in beta band. The current findings suggest that in MS the higher level of fatigue might be related to a maladaptive functioning of the salience and visual network.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1203-1216"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-06-19DOI: 10.1007/s10548-024-01063-1
Jurong Ding, Zhiling Tang, Yihong Liu, Qiang Chen, Ke Tong, Mei Yang, Xin Ding
{"title":"Altered Intrinsic Brain Activity in Ischemic Stroke Patients Assessed Using the Percent Amplitude of a Fluctuation Method.","authors":"Jurong Ding, Zhiling Tang, Yihong Liu, Qiang Chen, Ke Tong, Mei Yang, Xin Ding","doi":"10.1007/s10548-024-01063-1","DOIUrl":"10.1007/s10548-024-01063-1","url":null,"abstract":"<p><p>Ischemic stroke is a vascular disease that may cause cognitive and behavioral abnormalities. This study aims to assess abnormal brain function in ischemic stroke patients using the percent amplitude of fluctuation (PerAF) method and further explore the feasibility of PerAF as an imaging biomarker for investigating ischemic stroke pathophysiology mechanisms. Sixteen ischemic stroke patients and 22 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (rs-fMRI) scanning, and the resulting data were analyzed using PerAF. Then a correlation analysis was conducted between PerAF values and Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Finally, the abnormal PerAF values were extracted and defined as features for support vector machine (SVM) analysis. Compared with HCs, ischemic stroke patients showed decreased PerAF in the bilateral cuneus, left middle frontal gyrus, precuneus and right inferior temporal gyrus, and increased PerAF in the bilateral orbital part of middle frontal gyrus and right orbital part of superior frontal gyrus. Correlation analyses revealed that PerAF values in the left orbital part of middle frontal gyrus was negatively correlated with the MoCA scores. The SVM classification of the PerAF values achieved an area under the curve (AUC) of 0.98 and an accuracy of 94.74%. Abnormal brain function has been found among ischemic stroke patients, which may be correlated with visual impairment, attention deficits, and dysregulation of negative emotions following a stroke. Our findings may support the potential of PerAF as a sensitive biomarker for investigating the underlying mechanisms of ischemic stroke.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1195-1202"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-07-11DOI: 10.1007/s10548-024-01066-y
Huijie Man, Anmin Gong, Xiaoou Song, Yijing Zhang, Yalan Zhou, Yunfa Fu
{"title":"Decoding the Preparation Stage of Target Shooting under Audiovisual Restricted Conditions: Investigating Neural Mechanisms Using Microstate Analysis.","authors":"Huijie Man, Anmin Gong, Xiaoou Song, Yijing Zhang, Yalan Zhou, Yunfa Fu","doi":"10.1007/s10548-024-01066-y","DOIUrl":"10.1007/s10548-024-01066-y","url":null,"abstract":"<p><p>Shooting is a fine sport that is greatly influenced by mental state, and the neural activity of brain in the preparation stage of shooting has a direct influence on the level of shooting. In order to explore the brain neural mechanism in the preparation stage of pistol shooting under audiovisual restricted conditions, and to reveal the intrinsic relationship between brain activity and shooting behavior indicators, the electroencephalography (EEG) signals and seven shooting behaviors including shooting performance, gun holding stability, and firing stability, were experimentally captured from 30 shooters, these shooters performed pistol shooting under three conditions, normal, dim, and noisy. Using EEG microstates combined with standardized low-resolution brain electromagnetic tomography (sLORETA) traceability analysis method, we investigated the difference between the microstates characteristics under audiovisual restricted conditions and normal condition, the relationship between the microstates characteristics and the behavioral indicators during the shooting preparation stage under different conditions. The experimental results showed that microstate 1 corresponded to microstate A, microstate 2 corresponded to microstate B, and microstate 4 corresponded to microstate D; Microstate 3 was a unique template, which was localized in the occipital lobe, its function was to generate the \"vision for action\"; The dim condition significantly reduced the shooter's performance, whereas the noisy condition had less effect on the shooter's performance; In audiovisual restricted conditions, the microstate characteristics were significantly different from those in the normal condition. Microstate 4' parameters decreased significantly while microstate 3' parameters increased significantly under restricted visual and auditory conditions; Dim condition required more shooting skills from the shooter; There was a significant relationship between characteristics of microstates and indicators of shooting behavior; It was concluded that in order to obtain good shooting performance, shooters should improve attention and concentrate on the adjustment of collimator and target's center leveling relation, but the focus was slightly different in the three conditions; Microstates that are more important for accomplishing the task have less variation in their characteristics over time; Similar conclusions to previous studies were obtained at the same time, i.e., increased visual attention prior to shooting is detrimental to shooting performance, and there is a high positive correlation with microstate D for task completion. The experimental results further reveal the brain neural mechanism in the shooting preparation stage, and the extracted neural markers can be used as effective functional indicators for monitoring the brain state in the shooting preparation stage of pistols.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1118-1138"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain TopographyPub Date : 2024-11-01Epub Date: 2024-08-20DOI: 10.1007/s10548-024-01072-0
Fernanda Nogueira, Lívia Shirahige, Rodrigo Brito, Hamably Lima, João Victor, María Paz Sanchez, Jocemar Ilha, Katia Monte-Silva
{"title":"Repetitive Transcranial Magnetic Stimulation with Body Weight-supported Treadmill Training Enhances Independent Walking of Individuals with Chronic Incomplete Spinal Cord Injury: A Pilot Randomized Clinical Trial.","authors":"Fernanda Nogueira, Lívia Shirahige, Rodrigo Brito, Hamably Lima, João Victor, María Paz Sanchez, Jocemar Ilha, Katia Monte-Silva","doi":"10.1007/s10548-024-01072-0","DOIUrl":"10.1007/s10548-024-01072-0","url":null,"abstract":"<p><p>The purpose of this study is to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with body weight-support treadmill training (BWSTT) for improving walking function of individuals with chronic incomplete spinal cord injury (iSCI). A 4-week, double-blinded, randomized, sham-controlled pilot study involved 12 sessions of real (10 Hz, 1800 pulses) or sham rTMS combined with BWSTT (15-20 min, moderate intensity). Walking independence was assessed using the Walking Index for Spinal Cord Injury II (WISCI-II). Lower extremity motor function (lower extremity motor score [LEMS]) and spasticity, sensory function, functional independence (Spinal Cord Injury Measure III [SCIM-III]), and quality of life were also assessed. Walking independence (WISCI-II) after the 6th session was higher in the BWSTT/rTMS real (n = 7) (median change (IQR): 3 (1.5 to 3.5)) than in the sham group (n = 8) (median change (IQR): 0 (0 to 0.25), but there was no difference between groups after 12th session (BWSTT/rTMS real median change (IQR): 4 (2 to 5); BWSSTT/rTMS sham median change (IQR): 0 (0 to 3.25). Compared to baseline, LEMS and SCIM-III mobility scores were increased after 12 sessions in the BWSTT/rTMS real but not in the sham group. Within- and between-group sensory function, functional independence, and quality of life remained similar. This preliminary result suggests that combining BWSTT with rTMS could lead to earlier gait improvement in patients with chronic iSCI.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":" ","pages":"1232-1241"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}