Realistic Subject-Specific Simulation of Resting State Scalp EEG Based on Physiological Model.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Adrien Bénard, Dragos-Mihai Maliia, Maxime Yochum, Elif Köksal-Ersöz, Jean-François Houvenaghel, Fabrice Wendling, Paul Sauleau, Pascal Benquet
{"title":"Realistic Subject-Specific Simulation of Resting State Scalp EEG Based on Physiological Model.","authors":"Adrien Bénard, Dragos-Mihai Maliia, Maxime Yochum, Elif Köksal-Ersöz, Jean-François Houvenaghel, Fabrice Wendling, Paul Sauleau, Pascal Benquet","doi":"10.1007/s10548-025-01115-0","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG) recordings are widely used in neuroscience to identify healthy individual brain rhythms and to detect alterations associated with various brain diseases. However, understanding the cellular origins of scalp EEG signals and their spatiotemporal changes during the resting state (RS) in humans remains challenging, as cellular-level recordings are typically restricted to animal models. The objective of this study was to simulate individual-specific spatiotemporal features of RS EEG and measure the degree of similarity between real and simulated EEG. Using a physiologically grounded whole-brain computational model (based on known neuronal subtypes and their structural and functional connectivity) that simulates interregional cortical circuitry activity, realistic individual EEG recordings during RS of three healthy subjects were created. The model included interconnected neural mass modules simulating activities of different neuronal subtypes, including pyramidal cells and four types of GABAergic interneurons. High-definition EEG and source localization were used to delineate the cortical extent of alpha and beta-gamma rhythms. To evaluate the realism of the simulated EEG, we developed a similarity index based on cross-correlation analysis in the frequency domain across various bipolar channels respecting standard longitudinal montage. Alpha oscillations were produced by strengthening the somatostatin-pyramidal loop in posterior regions, while beta-gamma oscillations were generated by increasing the excitability of parvalbumin-interneurons on pyramidal neurons in anterior regions. The generation of realistic individual RS EEG rhythms represents a significant advance for research fields requiring data augmentation, including brain-computer interfaces and artificial intelligence training.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"43"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01115-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography (EEG) recordings are widely used in neuroscience to identify healthy individual brain rhythms and to detect alterations associated with various brain diseases. However, understanding the cellular origins of scalp EEG signals and their spatiotemporal changes during the resting state (RS) in humans remains challenging, as cellular-level recordings are typically restricted to animal models. The objective of this study was to simulate individual-specific spatiotemporal features of RS EEG and measure the degree of similarity between real and simulated EEG. Using a physiologically grounded whole-brain computational model (based on known neuronal subtypes and their structural and functional connectivity) that simulates interregional cortical circuitry activity, realistic individual EEG recordings during RS of three healthy subjects were created. The model included interconnected neural mass modules simulating activities of different neuronal subtypes, including pyramidal cells and four types of GABAergic interneurons. High-definition EEG and source localization were used to delineate the cortical extent of alpha and beta-gamma rhythms. To evaluate the realism of the simulated EEG, we developed a similarity index based on cross-correlation analysis in the frequency domain across various bipolar channels respecting standard longitudinal montage. Alpha oscillations were produced by strengthening the somatostatin-pyramidal loop in posterior regions, while beta-gamma oscillations were generated by increasing the excitability of parvalbumin-interneurons on pyramidal neurons in anterior regions. The generation of realistic individual RS EEG rhythms represents a significant advance for research fields requiring data augmentation, including brain-computer interfaces and artificial intelligence training.

基于生理模型的静息状态头皮脑电图仿真研究。
脑电图(EEG)记录在神经科学中被广泛用于识别健康个体的大脑节律和检测与各种脑部疾病相关的变化。然而,了解头皮脑电图信号的细胞起源及其在人类静息状态(RS)期间的时空变化仍然具有挑战性,因为细胞水平的记录通常仅限于动物模型。本研究的目的是模拟个体的RS脑电图时空特征,并测量真实脑电图与模拟脑电图的相似程度。使用基于生理学的全脑计算模型(基于已知的神经元亚型及其结构和功能连接)模拟区域间皮质回路活动,创建了三个健康受试者在RS期间的真实个体脑电图记录。该模型包括相互连接的神经质量模块,模拟不同神经元亚型的活动,包括锥体细胞和四种gaba能中间神经元。采用高清晰度脑电图和源定位来描绘α和β - γ节律的皮质范围。为了评估模拟脑电图的真实感,我们根据标准纵向蒙太奇的不同双极通道在频域上的互相关分析,建立了一个相似指数。α振荡是通过加强后区生长抑素-锥体环产生的,而β - γ振荡是通过增加前区锥体神经元上小蛋白中间神经元的兴奋性产生的。生成真实的个体RS脑电图节律代表了需要数据增强的研究领域的重大进步,包括脑机接口和人工智能训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信