脊髓损伤后皮层下网络的重组反映了患者的感觉运动能力。

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Na Li, Meisi Song, Mao Pang, Xiaodan Ma, Weihong Qiu, Zhuang Kang, Yong Yu, Zhaocong Chen, Zulin Dou, Xiquan Hu, Bin Liu, Limin Rong
{"title":"脊髓损伤后皮层下网络的重组反映了患者的感觉运动能力。","authors":"Na Li, Meisi Song, Mao Pang, Xiaodan Ma, Weihong Qiu, Zhuang Kang, Yong Yu, Zhaocong Chen, Zulin Dou, Xiquan Hu, Bin Liu, Limin Rong","doi":"10.1007/s10548-025-01127-w","DOIUrl":null,"url":null,"abstract":"<p><p>We explore cerebral reorganization in patients with spinal cord injury (SCI) using structural and functional magnetic resonance imaging (fMRI) to investigate regions relative to the prognosis of sensory-motor ability within SCI patients. Thirty right-handed SCI patients and 30 gender- and age-matched healthy controls (HCs) were included. Gray matter volume (GMV) changes in SCI patients were observed and the amplitude of low-frequency fluctuations (ALFF) values within regions with significant differences in GMV were calculated. These altered gray matter regions were used as regions of interest (ROIs) for functional connectivity (FC) analysis to detect related functional changes. Additionally, the Granger causality analysis (GCA) was used to study alterations in effective connectivity (EC) within the brain. The potential association between all the above MRI values with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) scores was investigated through partial correlation analysis. SCI patients showed reduced GMV in bilateral putamen compared to the HCs. Meanwhile, significant lower FC were found between the bilateral putamen and the right superior parietal gyrus, whereas significant higher FC were found between the right putamen and the bilateral precuneus in patients with SCI. GCA revealed enhanced EC from the left precuneus to the right putamen. The degree of functional alterations with the putamen might hint at the level of sensory-motor function of patients following SCI. When multisensory integration was decreased due to disease, the increased connection between the precuneus and the putamen might serve a role in SCI recovery by increasing visuospatial integration.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 5","pages":"53"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Reorganization of Subcortical Network Reflects Sensory-Motor Abilities in Patients after Spinal Cord Injury.\",\"authors\":\"Na Li, Meisi Song, Mao Pang, Xiaodan Ma, Weihong Qiu, Zhuang Kang, Yong Yu, Zhaocong Chen, Zulin Dou, Xiquan Hu, Bin Liu, Limin Rong\",\"doi\":\"10.1007/s10548-025-01127-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We explore cerebral reorganization in patients with spinal cord injury (SCI) using structural and functional magnetic resonance imaging (fMRI) to investigate regions relative to the prognosis of sensory-motor ability within SCI patients. Thirty right-handed SCI patients and 30 gender- and age-matched healthy controls (HCs) were included. Gray matter volume (GMV) changes in SCI patients were observed and the amplitude of low-frequency fluctuations (ALFF) values within regions with significant differences in GMV were calculated. These altered gray matter regions were used as regions of interest (ROIs) for functional connectivity (FC) analysis to detect related functional changes. Additionally, the Granger causality analysis (GCA) was used to study alterations in effective connectivity (EC) within the brain. The potential association between all the above MRI values with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) scores was investigated through partial correlation analysis. SCI patients showed reduced GMV in bilateral putamen compared to the HCs. Meanwhile, significant lower FC were found between the bilateral putamen and the right superior parietal gyrus, whereas significant higher FC were found between the right putamen and the bilateral precuneus in patients with SCI. GCA revealed enhanced EC from the left precuneus to the right putamen. The degree of functional alterations with the putamen might hint at the level of sensory-motor function of patients following SCI. When multisensory integration was decreased due to disease, the increased connection between the precuneus and the putamen might serve a role in SCI recovery by increasing visuospatial integration.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 5\",\"pages\":\"53\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-025-01127-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01127-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用结构和功能磁共振成像(fMRI)研究脊髓损伤(SCI)患者的大脑重组,以研究与SCI患者感觉-运动能力预后相关的区域。包括30名右撇子SCI患者和30名性别和年龄匹配的健康对照(hc)。观察脊髓损伤患者的灰质体积(GMV)变化,计算GMV差异显著区域内的低频波动幅度(ALFF)值。这些改变的灰质区域被用作功能连接(FC)分析的兴趣区域(roi),以检测相关的功能变化。此外,格兰杰因果分析(GCA)被用于研究大脑内有效连接(EC)的变化。通过偏相关分析研究上述MRI值与国际脊髓损伤神经学分类标准(ISNCSCI)评分之间的潜在关联。与hc相比,SCI患者双侧壳核GMV减少。同时,SCI患者双侧壳核与右侧顶叶上回之间的FC显著降低,而右侧壳核与双侧楔前叶之间的FC显著升高。GCA显示左楔前叶至右壳核的EC增强。壳核的功能改变程度可能提示脊髓损伤后患者的感觉运动功能水平。当多感觉整合因疾病而减少时,楔前叶和壳核之间连接的增加可能通过增加视觉空间整合在脊髓损伤恢复中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Reorganization of Subcortical Network Reflects Sensory-Motor Abilities in Patients after Spinal Cord Injury.

We explore cerebral reorganization in patients with spinal cord injury (SCI) using structural and functional magnetic resonance imaging (fMRI) to investigate regions relative to the prognosis of sensory-motor ability within SCI patients. Thirty right-handed SCI patients and 30 gender- and age-matched healthy controls (HCs) were included. Gray matter volume (GMV) changes in SCI patients were observed and the amplitude of low-frequency fluctuations (ALFF) values within regions with significant differences in GMV were calculated. These altered gray matter regions were used as regions of interest (ROIs) for functional connectivity (FC) analysis to detect related functional changes. Additionally, the Granger causality analysis (GCA) was used to study alterations in effective connectivity (EC) within the brain. The potential association between all the above MRI values with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) scores was investigated through partial correlation analysis. SCI patients showed reduced GMV in bilateral putamen compared to the HCs. Meanwhile, significant lower FC were found between the bilateral putamen and the right superior parietal gyrus, whereas significant higher FC were found between the right putamen and the bilateral precuneus in patients with SCI. GCA revealed enhanced EC from the left precuneus to the right putamen. The degree of functional alterations with the putamen might hint at the level of sensory-motor function of patients following SCI. When multisensory integration was decreased due to disease, the increased connection between the precuneus and the putamen might serve a role in SCI recovery by increasing visuospatial integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信