帕金森病的冷漠:脑电图微状态特征。

IF 2.9 3区 医学 Q3 CLINICAL NEUROLOGY
Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu
{"title":"帕金森病的冷漠:脑电图微状态特征。","authors":"Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu","doi":"10.1007/s10548-025-01124-z","DOIUrl":null,"url":null,"abstract":"<p><p>Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"49"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apathy in Parkinson's Disease: EEG Microstate Characteristics.\",\"authors\":\"Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu\",\"doi\":\"10.1007/s10548-025-01124-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 4\",\"pages\":\"49\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-025-01124-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01124-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

冷漠是一种认知、行为和情感障碍,其特征是目标导向活动的减少以及情感的扁平化。这种多面性疾病在帕金森病中被描述为一种非常常见的神经精神特征。然而,冷漠背后的病理生理学仍未被完全理解。本研究的主要目的是确定帕金森病冷漠的微观状态相关性。这项研究涉及诊断为特发性帕金森病的患者。根据冷漠评价量表标准,帕金森病组分为冷漠组和非冷漠组。患者接受临床、运动、人口学特征以及神经心理测量评估。记录自发性脑电图脑活动,并进行微观状态分析。无动于衷组和非无动于衷组的临床和运动功能无显著差异;然而,麻木组在执行功能和记忆测试中表现更差。对非麻木组和麻木组的脑电图微状态进行比较发现,麻木组的B、E微状态持续时间和覆盖范围增加,而D微状态出现频率减少。此外,在冷漠患者中,观察到从Microstate A >00b, C > E和C > G的转变增加。我们的研究结果表明,从微状态A到B和从C到E和G的转变增加,以及微状态E和B的增加和微状态D的减少,可能反映了帕金森性冷漠中几个大尺度脑回路的活动或功能连接的变化。另一方面,微状态E可能是反映帕金森冷漠中与默认模式网络相关变化的基本微状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apathy in Parkinson's Disease: EEG Microstate Characteristics.

Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信