{"title":"帕金森病的冷漠:脑电图微状态特征。","authors":"Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu","doi":"10.1007/s10548-025-01124-z","DOIUrl":null,"url":null,"abstract":"<p><p>Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 4","pages":"49"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apathy in Parkinson's Disease: EEG Microstate Characteristics.\",\"authors\":\"Fadime Çadırcı Tungaç, Eren Toplutaş, Nagihan Mantar, Bahar Güntekin, Lütfü Hanoğlu\",\"doi\":\"10.1007/s10548-025-01124-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 4\",\"pages\":\"49\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-025-01124-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01124-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
冷漠是一种认知、行为和情感障碍,其特征是目标导向活动的减少以及情感的扁平化。这种多面性疾病在帕金森病中被描述为一种非常常见的神经精神特征。然而,冷漠背后的病理生理学仍未被完全理解。本研究的主要目的是确定帕金森病冷漠的微观状态相关性。这项研究涉及诊断为特发性帕金森病的患者。根据冷漠评价量表标准,帕金森病组分为冷漠组和非冷漠组。患者接受临床、运动、人口学特征以及神经心理测量评估。记录自发性脑电图脑活动,并进行微观状态分析。无动于衷组和非无动于衷组的临床和运动功能无显著差异;然而,麻木组在执行功能和记忆测试中表现更差。对非麻木组和麻木组的脑电图微状态进行比较发现,麻木组的B、E微状态持续时间和覆盖范围增加,而D微状态出现频率减少。此外,在冷漠患者中,观察到从Microstate A >00b, C > E和C > G的转变增加。我们的研究结果表明,从微状态A到B和从C到E和G的转变增加,以及微状态E和B的增加和微状态D的减少,可能反映了帕金森性冷漠中几个大尺度脑回路的活动或功能连接的变化。另一方面,微状态E可能是反映帕金森冷漠中与默认模式网络相关变化的基本微状态。
Apathy in Parkinson's Disease: EEG Microstate Characteristics.
Apathy is a cognitive, behavioral, and emotional disorder marked by a decrease in goal-directed activities as well as affective flattening. This multifaceted disorder has been described in Parkinson's disease as a highly common neuropsychiatric feature. The pathophysiology that underlies apathy, however, is still not entirely understood. The major goal of this study was to determine the microstate correlations of apathy in Parkinson's disease. This study involved patients with the diagnosis of idiopathic Parkinson's disease. Based on the Apathy Evaluation Scale criteria, Parkinson's disease groups were divided into two main groups- apathetic and non-apathetic. Patients underwent clinical, motor, and demographic characteristics as well as neuropsychometric evaluations. Spontaneous EEG brain activity was recorded, and a microstate analysis was conducted. The clinical and motor functions of the apathetic and non-apathetic groups did not differ significantly; nevertheless, the apathetic group performed worse on several executive function and memory tests. A comparison of EEG microstates between the apathetic and non-apathetic groups found that the apathetic group had an increase in the duration and coverage of microstates B and E, whereas the frequency of Microstate D decreased. Additionally, in patients with apathy, an increased transition was observed from Microstate A > B, C > E and C > G. Our findings suggest that the increased transitions from Microstate A to B and from C to E and G, along with an increase in Microstates E and B and a decrease in Microstate D, may reflect changes in the activity or functional connectivity of several large-scale brain circuits in Parkinsonian apathy. On the other hand, Microstate E could be the fundamental microstate reflecting changes associated with the Default Mode Network in Parkinsonian apathy.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.