Bulletin des Sciences Mathematiques最新文献

筛选
英文 中文
The existence of positive periodic solutions about generalized hematopoiesis model 广义造血模型正周期解的存在性
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103638
Jia Yuan , Lishan Liu , Haibo Gu , Yonghong Wu
{"title":"The existence of positive periodic solutions about generalized hematopoiesis model","authors":"Jia Yuan ,&nbsp;Lishan Liu ,&nbsp;Haibo Gu ,&nbsp;Yonghong Wu","doi":"10.1016/j.bulsci.2025.103638","DOIUrl":"10.1016/j.bulsci.2025.103638","url":null,"abstract":"<div><div>This paper focuses on the generalized hematopoietic model with multiple variable delays and multiple exponents. Using the fixed point theorem of cone expansion and compression, it is proved that the hematopoiesis model in the sup-linear or sub-linear case must have a positive periodic solution. And it is deduced that there are two positive periodic solutions for the hematopoietic model when it has both sup-linear and sub-linear terms. In addition, several examples of the numerical simulations are given in this paper for illustration.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103638"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seshadri constants of M‾0,n Seshadri常数M的0,n
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-10 DOI: 10.1016/j.bulsci.2025.103639
Shripad M. Garge , Arghya Pramanik , Aditya Subramaniam
{"title":"Seshadri constants of M‾0,n","authors":"Shripad M. Garge ,&nbsp;Arghya Pramanik ,&nbsp;Aditya Subramaniam","doi":"10.1016/j.bulsci.2025.103639","DOIUrl":"10.1016/j.bulsci.2025.103639","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> be the moduli space of stable rational <em>n</em>-pointed curves for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. We estimate lower bounds for Seshadri constants of nef <span><math><mi>Q</mi></math></span>-line bundles at arbitrary points on <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><mn>5</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>7</mn></math></span>. Our results for <span><math><mi>n</mi><mo>=</mo><mn>5</mn></math></span> generalise some results of Taro Sano (2014). We also estimate lower bounds for Seshadri constants of nef Keel divisors at arbitrary points on <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>, assuming a conjecture describing the Mori cone of <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103639"},"PeriodicalIF":1.3,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitesimal and tangential 16-th Hilbert problem on zero-cycles 零环上的无限小切16次希尔伯特问题
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103634
J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera
{"title":"Infinitesimal and tangential 16-th Hilbert problem on zero-cycles","authors":"J.L. Bravo ,&nbsp;P. Mardešić ,&nbsp;D. Novikov ,&nbsp;J. Pontigo-Herrera","doi":"10.1016/j.bulsci.2025.103634","DOIUrl":"10.1016/j.bulsci.2025.103634","url":null,"abstract":"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103634"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143823856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: Half-integrality of line bundles on partial flag schemes of classical Lie groups 经典李群的部分标志格式上线束的半完整性的勘误
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103626
Takuma Hayashi
{"title":"Corrigendum to: Half-integrality of line bundles on partial flag schemes of classical Lie groups","authors":"Takuma Hayashi","doi":"10.1016/j.bulsci.2025.103626","DOIUrl":"10.1016/j.bulsci.2025.103626","url":null,"abstract":"<div><div>In this note, I fix mistakes on the continuity arguments concerning the profinite topology of the Galois group of an infinite Galois extension of fields in my previous paper <span><span>[6]</span></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103626"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143806592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invariant p-complements normalized by the fixed point subgroup 不动点子群归一化的不变p补
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-04-04 DOI: 10.1016/j.bulsci.2025.103635
Hangyang Meng , Xingyu Zhang
{"title":"Invariant p-complements normalized by the fixed point subgroup","authors":"Hangyang Meng ,&nbsp;Xingyu Zhang","doi":"10.1016/j.bulsci.2025.103635","DOIUrl":"10.1016/j.bulsci.2025.103635","url":null,"abstract":"<div><div>Let a group <em>A</em> act on a group <em>G</em> coprimely, i.e., <span><math><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>,</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We say that <em>G</em> is <em>A</em>-<em>p</em>-nilpotent if <em>G</em> has an <em>A</em>-invariant <span><math><mi>Hall</mi><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>-subgroup normalized by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo></math></span>. In this paper, we give some equivalent descriptions on <em>A</em>-<em>p</em>-nilpotence by analyzing the structure of minimal non-<em>A</em>-<em>p</em>-nilpotent groups. This is a follow-up work to A. Beltrán's research.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103635"},"PeriodicalIF":1.3,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143807280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction 三维零热传导不可压缩磁流体动力学方程强解的整体存在性
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-31 DOI: 10.1016/j.bulsci.2025.103625
Jinxia Liang , Xinqiu Zhang
{"title":"Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction","authors":"Jinxia Liang ,&nbsp;Xinqiu Zhang","doi":"10.1016/j.bulsci.2025.103625","DOIUrl":"10.1016/j.bulsci.2025.103625","url":null,"abstract":"<div><div>In this paper, we study an initial-boundary value problem of three-dimensional inhomogeneous incompressible magnetohydrodynamics (MHD) fluids with vacuum, zero heat-conduction and density-temperature-dependent viscosity and magnetic diffusive coefficients. Based on the time-weighted a priori estimates, we establish the global existence and exponential decay properties of strong solutions under the conditions that the initial energy is suitably small.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103625"},"PeriodicalIF":1.3,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbations of a system of general functional equations in several variables 多变量一般泛函方程系统的微扰
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-31 DOI: 10.1016/j.bulsci.2025.103624
Hamid Khodaei
{"title":"Perturbations of a system of general functional equations in several variables","authors":"Hamid Khodaei","doi":"10.1016/j.bulsci.2025.103624","DOIUrl":"10.1016/j.bulsci.2025.103624","url":null,"abstract":"<div><div>Pólya and Szegő <span><span>[53, Teil I, Aufgabe 99]</span></span> proved that every approximate sequence of reals is near an additive sequence. Bourgin <span><span>[11]</span></span> showed that every approximate ring homomorphism from a Banach algebra onto a unital Banach algebra is necessarily a ring homomorphism. We deal with Pólya-Szegő's result for a general functional equation and a system of general functional equations in several variables. To do this, we shall use a different direct method from the previous studies. In consequence, Bourgin's result for approximate homomorphisms and Lie homomorphisms on Banach algebras are discussed. Several examples for comparison with previous studies are included.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103624"},"PeriodicalIF":1.3,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143768977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subnormal transcendental meromorphic solutions of delay differential equations 时滞微分方程的次正规超越亚纯解
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-27 DOI: 10.1016/j.bulsci.2025.103623
Mengting Xia, Jianren Long, Xuxu Xiang
{"title":"Subnormal transcendental meromorphic solutions of delay differential equations","authors":"Mengting Xia,&nbsp;Jianren Long,&nbsp;Xuxu Xiang","doi":"10.1016/j.bulsci.2025.103623","DOIUrl":"10.1016/j.bulsci.2025.103623","url":null,"abstract":"<div><div>The following two delay differential equations are studied,<span><span><span><math><mi>ω</mi><msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><munderover><mo>∑</mo><mrow><mi>μ</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span></div><div>where <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> are integers, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are nonzero complex numbers, <span><math><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> are small with respect to <em>ω</em>, <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> is rational in <em>ω</em> with small meromorphic coefficients with respect to <em>ω</em>. The necessary conditions for the existence of subnormal transcendental meromorphic solutions of the above two equations are obtained, which extend the previous results from Cao, Chen and Korhonen <span><span>[2]</span></span>, Halburd and Korhonen <span><span>[6]</span></span>, Korhonen and Liu <span><span>[12]</span></span>. Some examples are given to support these results.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103623"},"PeriodicalIF":1.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Cesàro type operators between weighted Bergman spaces 加权伯格曼空间之间的加权Cesàro类型算子
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-27 DOI: 10.1016/j.bulsci.2025.103622
Petros Galanopoulos , Aristomenis G. Siskakis , Ruhan Zhao
{"title":"Weighted Cesàro type operators between weighted Bergman spaces","authors":"Petros Galanopoulos ,&nbsp;Aristomenis G. Siskakis ,&nbsp;Ruhan Zhao","doi":"10.1016/j.bulsci.2025.103622","DOIUrl":"10.1016/j.bulsci.2025.103622","url":null,"abstract":"<div><div>Let <span><math><mi>D</mi></math></span> be the open unit disk in the complex plane <span><math><mi>C</mi></math></span>. Let <em>μ</em> be a positive Borel measure on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. If <span><math><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an analytic function in <span><math><mi>D</mi></math></span>, we consider for <span><math><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span> the following weighted Cesàro type operator<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><mfrac><mrow><mi>Γ</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>+</mo><mi>β</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>)</mo><mo>!</mo><mspace></mspace><mi>Γ</mi><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mfrac><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <em>n</em>-th moment of <em>μ</em> given by <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><munder><mo>∫</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mi>t</mi></mrow><mrow><mi>n</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>μ</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. We characterize boundedness of the weighted Cesàro type operator <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> from the weighted Bergman space <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> to <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow><mrow><mi>q</mi></mrow></msubsup></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. Our method relies on a representation of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>μ</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span> as an integral operator with a kernel and a generalized Schur's test.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103622"},"PeriodicalIF":1.3,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143785261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On character variety of Anosov representations 论Anosov表示的字符变化
IF 1.3 3区 数学
Bulletin des Sciences Mathematiques Pub Date : 2025-03-26 DOI: 10.1016/j.bulsci.2025.103621
Krishnendu Gongopadhyay, Tathagata Nayak
{"title":"On character variety of Anosov representations","authors":"Krishnendu Gongopadhyay,&nbsp;Tathagata Nayak","doi":"10.1016/j.bulsci.2025.103621","DOIUrl":"10.1016/j.bulsci.2025.103621","url":null,"abstract":"<div><div>Let Γ be the fundamental group of a <em>k</em>-punctured, <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, closed connected orientable surface of genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>. We show that the character variety of the <span><math><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov irreducible representations, resp. the character variety of the <span><math><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span>-Anosov Zariski dense representations of Γ into <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, is a complex manifold of complex dimension <span><math><mo>(</mo><mn>2</mn><mi>g</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>Γ</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>)</mo></math></span>, we also show that these character varieties are holomorphic symplectic manifolds.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103621"},"PeriodicalIF":1.3,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信