{"title":"时滞微分方程的次正规超越亚纯解","authors":"Mengting Xia, Jianren Long, Xuxu Xiang","doi":"10.1016/j.bulsci.2025.103623","DOIUrl":null,"url":null,"abstract":"<div><div>The following two delay differential equations are studied,<span><span><span><math><mi>ω</mi><msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><munderover><mo>∑</mo><mrow><mi>μ</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span></div><div>where <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> are integers, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are nonzero complex numbers, <span><math><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> are small with respect to <em>ω</em>, <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> is rational in <em>ω</em> with small meromorphic coefficients with respect to <em>ω</em>. The necessary conditions for the existence of subnormal transcendental meromorphic solutions of the above two equations are obtained, which extend the previous results from Cao, Chen and Korhonen <span><span>[2]</span></span>, Halburd and Korhonen <span><span>[6]</span></span>, Korhonen and Liu <span><span>[12]</span></span>. Some examples are given to support these results.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103623"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subnormal transcendental meromorphic solutions of delay differential equations\",\"authors\":\"Mengting Xia, Jianren Long, Xuxu Xiang\",\"doi\":\"10.1016/j.bulsci.2025.103623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The following two delay differential equations are studied,<span><span><span><math><mi>ω</mi><msup><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>k</mi></mrow></msup><munderover><mo>∑</mo><mrow><mi>μ</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></munderover><msub><mrow><mi>e</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> and<span><span><span><math><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mrow><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mfrac><mo>=</mo><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span></div><div>where <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>s</mi><mo>≥</mo><mn>1</mn></math></span> are integers, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> are nonzero complex numbers, <span><math><mi>a</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span>, <span><math><mo>.</mo><mo>.</mo><mo>.</mo></math></span>, <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> are small with respect to <em>ω</em>, <span><math><mi>R</mi><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></math></span> is rational in <em>ω</em> with small meromorphic coefficients with respect to <em>ω</em>. The necessary conditions for the existence of subnormal transcendental meromorphic solutions of the above two equations are obtained, which extend the previous results from Cao, Chen and Korhonen <span><span>[2]</span></span>, Halburd and Korhonen <span><span>[6]</span></span>, Korhonen and Liu <span><span>[12]</span></span>. Some examples are given to support these results.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103623\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000491\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000491","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Subnormal transcendental meromorphic solutions of delay differential equations
The following two delay differential equations are studied, and
where , , are integers, , , are nonzero complex numbers, , , , are small with respect to ω, is rational in ω with small meromorphic coefficients with respect to ω. The necessary conditions for the existence of subnormal transcendental meromorphic solutions of the above two equations are obtained, which extend the previous results from Cao, Chen and Korhonen [2], Halburd and Korhonen [6], Korhonen and Liu [12]. Some examples are given to support these results.