J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera
{"title":"零环上的无限小切16次希尔伯特问题","authors":"J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera","doi":"10.1016/j.bulsci.2025.103634","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103634"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal and tangential 16-th Hilbert problem on zero-cycles\",\"authors\":\"J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera\",\"doi\":\"10.1016/j.bulsci.2025.103634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103634\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000600\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000600","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Infinitesimal and tangential 16-th Hilbert problem on zero-cycles
In this paper, given two polynomials f and g of one variable and a 0-cycle C of f, we consider the deformation . We define two functions: the displacement function and its first order approximation: the abelian integral .
The infinitesimal and tangential 16-th Hilbert problem for zero-cycles are problems of counting isolated regular zeros of , for ϵ small, or of , respectively.
We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of f and g, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.