零环上的无限小切16次希尔伯特问题

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
J.L. Bravo , P. Mardešić , D. Novikov , J. Pontigo-Herrera
{"title":"零环上的无限小切16次希尔伯特问题","authors":"J.L. Bravo ,&nbsp;P. Mardešić ,&nbsp;D. Novikov ,&nbsp;J. Pontigo-Herrera","doi":"10.1016/j.bulsci.2025.103634","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103634"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal and tangential 16-th Hilbert problem on zero-cycles\",\"authors\":\"J.L. Bravo ,&nbsp;P. Mardešić ,&nbsp;D. Novikov ,&nbsp;J. Pontigo-Herrera\",\"doi\":\"10.1016/j.bulsci.2025.103634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, given two polynomials <em>f</em> and <em>g</em> of one variable and a 0-cycle <em>C</em> of <em>f</em>, we consider the deformation <span><math><mi>f</mi><mo>+</mo><mi>ϵ</mi><mi>g</mi></math></span>. We define two functions: the <em>displacement function</em> <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span> and its first order approximation: the <em>abelian integral</em> <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>.</div><div>The <em>infinitesimal</em> and <em>tangential 16-th Hilbert problem</em> for zero-cycles are problems of counting isolated regular zeros of <span><math><mi>Δ</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></math></span>, for <em>ϵ</em> small, or of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, respectively.</div><div>We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of <em>f</em> and <em>g</em>, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103634\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000600\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000600","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出两个单变量多项式f和g,以及f的一个0循环C,考虑变形f+ϵg。我们定义了两个函数:位移函数Δ(t, λ)和它的一阶近似:阿贝尔积分M1(t)。零环的无穷小和切向16阶希尔伯特问题分别是计算Δ(t, λ)、λ small或M1(t)的孤立正则零的问题。我们证明了这两个问题是不等价的,并找到了零环上的无限小切向16阶Hilbert问题的最优界,它是f和g度的函数。这两个问题是平面上矢量场的经典无限小问题和切向16阶希尔伯特问题的零维模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitesimal and tangential 16-th Hilbert problem on zero-cycles
In this paper, given two polynomials f and g of one variable and a 0-cycle C of f, we consider the deformation f+ϵg. We define two functions: the displacement function Δ(t,ϵ) and its first order approximation: the abelian integral M1(t).
The infinitesimal and tangential 16-th Hilbert problem for zero-cycles are problems of counting isolated regular zeros of Δ(t,ϵ), for ϵ small, or of M1(t), respectively.
We show that the two problems are not equivalent and find optimal bounds, in function of the degrees of f and g, for the infinitesimal and tangential 16-th Hilbert problem on zero-cycles. These two problems are the zero-dimensional analog of the classical infinitesimal and tangential 16-th Hilbert problems for vector fields in the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信