{"title":"三维零热传导不可压缩磁流体动力学方程强解的整体存在性","authors":"Jinxia Liang , Xinqiu Zhang","doi":"10.1016/j.bulsci.2025.103625","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study an initial-boundary value problem of three-dimensional inhomogeneous incompressible magnetohydrodynamics (MHD) fluids with vacuum, zero heat-conduction and density-temperature-dependent viscosity and magnetic diffusive coefficients. Based on the time-weighted a priori estimates, we establish the global existence and exponential decay properties of strong solutions under the conditions that the initial energy is suitably small.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103625"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction\",\"authors\":\"Jinxia Liang , Xinqiu Zhang\",\"doi\":\"10.1016/j.bulsci.2025.103625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study an initial-boundary value problem of three-dimensional inhomogeneous incompressible magnetohydrodynamics (MHD) fluids with vacuum, zero heat-conduction and density-temperature-dependent viscosity and magnetic diffusive coefficients. Based on the time-weighted a priori estimates, we establish the global existence and exponential decay properties of strong solutions under the conditions that the initial energy is suitably small.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103625\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000744972500051X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972500051X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global existence of strong solutions to the 3D incompressible magnetohydrodynamics equations with zero heat-conduction
In this paper, we study an initial-boundary value problem of three-dimensional inhomogeneous incompressible magnetohydrodynamics (MHD) fluids with vacuum, zero heat-conduction and density-temperature-dependent viscosity and magnetic diffusive coefficients. Based on the time-weighted a priori estimates, we establish the global existence and exponential decay properties of strong solutions under the conditions that the initial energy is suitably small.